K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

\(\Leftrightarrow2sin\left(4x+\frac{6\pi}{5}\right)=\sqrt{3}\)

\(\Leftrightarrow sin\left(4x+\frac{6\pi}{5}\right)=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{6\pi}{5}=\frac{\pi}{3}+k2\pi\\4x+\frac{6\pi}{5}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{13\pi}{60}+\frac{k\pi}{2}\\x=-\frac{2\pi}{15}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
6 tháng 8 2020

ĐKXĐ: ...

\(\Leftrightarrow\frac{cos\left(x+\frac{5\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}+\frac{sin\left(2x-\frac{\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}=0\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)+sin\left(2x-\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=-sin\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=cos\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x+\frac{5\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
24 tháng 7 2020

d/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

NV
6 tháng 8 2020

ĐKXĐ: ...

\(\Leftrightarrow sin\left(2x+\frac{3\pi}{4}\right)+cos\left(x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-sin\left(2x+\frac{3\pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=cos\left(2x+\frac{5\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{5\pi}{4}=x+\frac{\pi}{4}+k2\pi\\2x+\frac{5\pi}{4}=-x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\pi+k2\pi\\x=-\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

27 tháng 10 2023

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

28 tháng 10 2023

Bạn đang nhầm Pi sanh Omega

19 tháng 8 2020

Bạn ơi, tại sao từ b2 chuyển xuống b3 được vậy, bạn dùng công thức gì vậy ạ

19 tháng 8 2020

\(cosa.cosb+sina.sinb=cos\left(a-b\right)\)

NV
14 tháng 8 2020

\(\Leftrightarrow cos\left(x-\frac{5\pi}{4}\right)=cos\left(\frac{\pi}{2}-x-\frac{3\pi}{4}\right)=cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow x-\frac{5\pi}{4}=-x-\frac{\pi}{4}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\)