Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3=1+\frac{1-t^2}{2}\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
Lời giải:
PT $\Leftrightarrow (\sin x+\cos x)(\sin ^2x-\sin x\cos x+\cos ^2x)-(\sin x+\cos x)=0$
$\Leftrightarrow (\sin x+\cos x)(\sin ^2x-\sin x\cos x+\cos ^2x-1)=0$
$\Leftrightarrow -\sin x\cos x(\sin x+\cos x)=0$
$\Leftrightarrow \sin x=0$ hoặc $\cos x=0$ hoặc $\sin x+\cos x=0$
Với $\sin x=0$ thì $x=k\pi$ với $k$ nguyên
Với $\cos x=0$ thì $x=\frac{\pi}{2}+k\pi$ với $k$ nguyên
Với $\sin x+\cos x=0$
$\Rightarrow (\sin x, \cos x)=(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$ và hoán vị
$\Rightarrow x=\frac{-\pi}{4}+k\pi$ với $k$ nguyên.
mik lm biếng quá mik chỉ nói cách làm thôi nha bạn
1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)
đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))
2) cx làm cách tương tự chia 2 vế cho cos^2x
3) giữ vế trái bung vế phải ra
\(sin2x-2sin^2x=2-4sin^22x\)
đặt t = sin2x (-1=<t=<1)
4) đẩy sinx cosx qua trái hết
\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)
\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)
\(-cos\left(sinxcosx+cos^2x+1\right)=0\)
cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))
5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]
khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2
làm đi là ra à
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)
\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)
\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(2tan^2x+3+4tanx-1-tan^2x=0\)
\(\Leftrightarrow tan^2x+4tanx+2=0\)
\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)
\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)
c/
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)
Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
a,
\(\cos^3x-\sin^3x=\cos x+\sin x\\ < =>\cos^3x-\cos x=\sin^3x-\sin x\\ < =>\cos x\left(\cos^2x-1\right)=\sin x\left(\sin^2x-1\right)\\ < =>\cos x.\left(-\sin^2x\right)=\sin x.\left(-\cos^2x\right)\\ < =>\dfrac{1}{cosx}=\dfrac{1}{sinx}\)
b,
\(2sinx+2\sqrt{3}cosx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\\ < =>2sinx-\dfrac{1}{sinx}=\dfrac{\sqrt{3}}{cosx}-2\sqrt{3}cosx\\ < =>\dfrac{2sin^2x-1}{sinx}=\dfrac{\sqrt{3}.cosx.\left(1-2cos^2x\right)}{cosx}\\ < =>\dfrac{cos2x}{sinx}=\sqrt{3}.cos2x\\ < =>\dfrac{1}{sinx}=\sqrt{3}\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
a.
Tổng là cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-sin^2x\end{matrix}\right.\)
Do đó: \(S=\dfrac{u_1}{1-q}=\dfrac{1}{1+sin^2x}\)
b. Tương tự, tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=cos^2x\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{1-cos^2x}=\dfrac{1}{sin^2x}\)
c. Do \(0< x< \dfrac{\pi}{4}\Rightarrow0< tanx< 1\)
Tổng trên vẫn là tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-tanx\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{1+tanx}\)
\(\Leftrightarrow4\left(sin^3x+cos^3x\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow4\left(sinx+cosx\right)^3-12sinx.cosx\left(sinx+cosx\right)-6sinx.cosx-4\left(sinx+cosx\right)=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(4t^3-6t\left(t^2-1\right)-3\left(t^2-1\right)-4t=0\)
\(\Leftrightarrow-2t^3-3t^2+2t+3=0\)
\(\Leftrightarrow\left(t^2-1\right)\left(2t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t=-\frac{3}{2}\left(l\right)\\\end{matrix}\right.\) \(\Rightarrow\left(sinx+cosx\right)^2=1\)
\(\Leftrightarrow2sinx.cosx=0\Leftrightarrow sin2x=0\)
\(\Rightarrow x=\frac{k\pi}{2}\)