Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ , cos3 x = 0 => 0 - 4 - 0 + 1 = 0 ( vô nghiệm)
+, cos3 x \(\ne\)0 , chia cả 2 vế của pt cho cos3 x , ta đc
\(\frac{\cos^3x-4sin^3x-3cosx.sin^2x+sinx}{cos^3x}=0\)
1 - \(\frac{4\sin^3x}{\cos^3x}\) - \(\frac{3\sin^2x}{cos^2x}\) + \(\frac{1}{\cos^2x}\)= 0
1 - 4 tan3x - 3 tan2x + 1 + tan2x = 0
-4 tan3x - 2tan2x + 2 = 0
=> tan x = tan \(\alpha\) ( tan \(\alpha\approx0,66\))
=> x = \(\alpha+k.\pi\)
b.
\(\Leftrightarrow2sin^2x+4sinx=3\left(1-sin^2x\right)\)
\(\Leftrightarrow5sin^2x+4sinx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{-2-\sqrt{19}}{5}\left(l\right)\\sinx=\frac{-2+\sqrt{19}}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\\x=\pi-arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow sinx\left(sin^2x+3sinx+2\right)=0\)
\(\Leftrightarrow sinx\left(sinx+1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a.
\(1-cos^22x-\left(\frac{1-cos2x}{2}\right)=\frac{1}{2}\)
\(\Leftrightarrow2cos^22x-cos2x=0\)
\(\Leftrightarrow cos2x\left(2cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=\frac{1}{2}\\\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
2/
\(\Leftrightarrow3sinx-4sin^3x-\sqrt{3}cosx=2sinx\)
\(\Leftrightarrow4sin^3x-sinx+\sqrt{3}cosx=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)+\sqrt{3}\left(1+tan^2x\right)=0\)
\(\Leftrightarrow3tan^3x+\sqrt{3}tan^2x-tanx+\sqrt{3}=0\)
Bạn xem lại đề, pt bậc 3 này ko giải được (nghiệm rất xấu)
1.
\(\Leftrightarrow\sqrt{3}cos^2x-\sqrt{3}+cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx=0\)
\(\Leftrightarrow-\sqrt{3}sin^2x+cosx+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+\sqrt{3}sinx\right)-\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+\sqrt{3}sinx-1\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\left[sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)
c.
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)
\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)
d.
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)
a.
\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)
\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
b.
\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
1. Ta có: \(-1\le sinx\le1\)
\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
\(y_{min}=-3\) khi \(sinx=-1\)
\(y_{max}=3\) khi \(sinx=1\)
2.
\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)
Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)
\(\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sinx=1\)
\(y_{max}=2\) khi \(sinx=-1\)
3.
\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)
\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)
\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)
4.
\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)
\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)
\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)
\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)
\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)
\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(4tan^3x+3-3tanx\left(1+tan^2x\right)-tan^2x=0\)
\(\Leftrightarrow tan^3x-tan^2x-3tanx+3=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow...\)