K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Sai đề phải ko bạn theo mình nghĩ chứng minh A chia hết cho 85 . Bạn coi lại thử đi.

1 tháng 6 2018

đã thử chứng minh và nó chia hết cho 85 :v

24 tháng 11 2017

\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)

\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)

\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)

Vậy \(A⋮84\) 

24 tháng 11 2017

Yêu cầu bài này là gì vậy bạn ơi ?

Ta có:

\(A=4n\left(1+4+4^2+4^3+...+4^{20}\right)\)

=\(4n\left(\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+\left(4^{19}+4^{20}+1\right)\right)\)

Hình như ko chia hết

6 tháng 9 2017

Mình được người khác vd là 1+4+42=21×4=84

mà 84 chia hết cho 84 mà mình cũng ko hiểu lắm

4 tháng 6 2019

a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0 

b) có vấn đề

c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 4+ 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

Đặt \(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

\(A=4^{n-1}\left(4^4+4^3-4^2-4\right)\)

\(A=4^{n-1}.\left(300\right)\)

\(A=4^{n-1}.\left(300\right)⋮300\)

Vậy...

hok tốt!!!

12 tháng 4 2020

1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)

\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)

\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)

\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)

2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)

\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )

11 tháng 4 2018

4\(^{n+3}\)+4\(^{n+2}\)-4\(^{n+1}\)-4\(^n\)

=\(4^3.4^n+4^2.4^n-4.4^n-4^n\)

=\(64.4^n+16.4^n-4.4^n-1.4^n\)

=\(75.4^{ }.4^{n-1}=300.4^{n-1}⋮300\)