\(\dfrac{5x}{2}\)cos\(\dfrac{3x}{2}\)+2(8sinx - 1)cosx =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow\dfrac{1-\cos2x}{2}+\dfrac{1-\cos4x}{2}+\dfrac{1-\cos6x}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow3-\cos2x-\cos4x-\cos6x=3\)

\(\Leftrightarrow\cos2x+\cos6x+\cos4x=0\)

\(\Leftrightarrow2\cdot\cos\left(\dfrac{6x+2x}{2}\right)\cdot\cos\left(\dfrac{6x-2x}{2}\right)+\cos2x=0\)

\(\Leftrightarrow\cos2x\left(2\cdot\cos4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\\cos4x=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\\4x=-\dfrac{2}{3}\Pi+k2\Pi\\4x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\\x=-\dfrac{1}{6}\Pi+\dfrac{k\Pi}{2}\\x=\dfrac{1}{6}\Pi+\dfrac{k\Pi}{2}\end{matrix}\right.\)

NV
25 tháng 7 2020

e/

\(\Leftrightarrow1+cos2x+1+cos4x+1+cos6x=3+3cosx.cos4x\)

\(\Leftrightarrow cos2x+cos6x+cos4x-3cosx.cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+cos4x-3cosx.cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1-3cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\\2cos2x-3cosx+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\left(2cos^2x-1\right)-3cosx+1=0\)

\(\Leftrightarrow4cos^2x-3cosx-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arccos\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow5\left(1+cosx\right)=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow5\left(1+cosx\right)=2+sin^2x-cos^2x\)

\(\Leftrightarrow5+5cosx=2+1-cos^2x-cos^2x\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

27 tháng 9 2018

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

27 tháng 9 2018

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

4 tháng 4 2017

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.