K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021
Ta thấy APF = 180–-ANS = AMS =180 - APEsuy ra F, P, E thăng hàng.Ta có APM= AEM góc nội tiếp chắn cung AM, AEM = SEC (đối đinh)Vì AC là tiếp tuyến của đường tròn (K) nên SEC – EFS (Tính chất góc tạo bởi tia tiếp tuyếnvà một dây).Mà EFS= PAN do tứ giác ANFP nội tiếp.Vậy APM = PAN→ AN//PM.Chứng minh tương tự ta cũng có: AM//PN => ANPM là hình bình hành.+ Các tam giác SKF, SON cân có chung đinh S nên đồng dạng suy ra KF // ONtuơng tự KE // OM suy ra SF/SN = SK/SO = SE/SM suy ra MN//EFTừ đó HGE = HFE = HMN suy ra tứ giác MNGH nội tiếp.Giả sử TS căt (0) và (K) lần lượt tại S1,S2thì TS.TS1 =TM.TN =TH.TG=TS1,TS2suy ra TS1 =TS2 suy ra S1 = S2 =SVậy TS là tiếp tuyển của (O).Tứ giác ANPM là hình bình hành nên AP và MN cắt nhau tại trung điêm I mỗi đường.Ta có theo tính chất góc tạo bởi tiếp tuyến và dây cung:JAM = PES = FST = NAS. Ta lai có AMI = AMN =ASN.Vậy tam giác AIM = tam giác ANS suy ra AM.SN = Al.AS.Tuơng tự AN.SM = AI.SN = AM.SN.Từ đó theo tính chất tiếp tuyển do TS tiếp xúc với (0)suy ra TM/TN = SM2/SN2 = AM2/AN2Vậy TA tiếp xúc với (0). Suy ra TA = TS.
Từ đó suy ra tam giác AST cân 
mình kbt làm câu a ạ 
29 tháng 4 2020

Bài 1 t chỉ giải được khi x, y, z cùng dấu. Còn TH x, y, z không cùng dấu thì chưa nghĩ ra (Chắc là giả sử x, y đồng dấu rồi.. chăng?)

1/ Do \(x^2\left(x-1\right)^2\ge0\therefore\frac{x^2}{\left(x+1\right)^2}\ge\frac{3x^2}{4\left(x^2+x+1\right)}\)

Như vậy: \(VT\ge\frac{3}{4}\left(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\) (*) với xyz = 1.

Nếu \(x,y,z>0\) thì đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) thu được BĐT Vacs.

Nếu \(\left(x,y,z\right)< 0\) thì đặt \(\left(x,y,z\right)\rightarrow\left(-m,-n,-p\right)\left(\text{với }m,n,p>0\right)\)

Cần chứng minh: \(\frac{m^2}{m^2-m+1}+\frac{n^2}{n^2-n+1}+\frac{p^2}{p^2-p+1}\ge1\)

Vì \(m,n,p\ge0\rightarrow VT\ge\frac{m^2}{m^2+m+1}+\frac{n^2}{n^2+n+1}+\frac{p^2}{p^2+p+1}\ge1\)

Đây là BĐT (*). Chứng minh tương tự.

1 tháng 5 2020

tth_new Làm khó m rồi tth :)) thực ra đề thực dương mà t viết thiếu :))))

Cách làm khác mà ko dùng tới bổ đề Vacs 

\(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\)

\(=\frac{1}{\left(\frac{1}{x}+1\right)^2}+\frac{1}{\left(\frac{1}{y}+1\right)^2}+\frac{1}{\left(\frac{1}{z}+1\right)^2}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\)

Khi đó LHS trở thành:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\)

Mặt khác theo Bunhiacopski ta có:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{\left(ab+1\right)\left(\frac{a}{b}+1\right)}+\frac{1}{\left(ab+1\right)\left(\frac{b}{a}+1\right)}=\frac{1}{ab+1}\)

Ta cần chứng minh \(\frac{1}{ab+1}+\frac{1}{\left(c+1\right)^2}=\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}-\frac{3}{4}\ge0\)

\(\Leftrightarrow\frac{\left(c-1\right)^2}{4\left(c+1\right)^2}\ge0\) ( đúng )

Nhớ không nhầm đây là VMO 2005 được nghệ An lấy lại đưa vào đề thi tỉnh nhưng với bậc cao hơn :))))