Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=\left[a^2-\left(b^2-2bc+c^2\right)\right]\left[\left(b+c\right)^2-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right]\left(b+c-a\right)\left(b+c+a\right)\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)
\(\Rightarrow2-\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+2-\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+2-\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\le3\)
Cần chứng minh BĐT ở dòng thứ 2 đúng
\(\Rightarrow\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(c+a\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Tương tự cho 2 BĐT còn lại r` cộng theo vế:
\(\RightarrowΣ\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\leΣ\frac{b^2}{a^2+b^2}+Σ\frac{c^2}{a^2+c^2}=3\)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
Tham khảo nhé~
Lời giải:
a)
$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$
$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$
$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$
$=(y+z)(yz+xz-xy-x^2)$
$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$
b)
$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$
$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$
$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$
$=(a+2b)(2ab-ac+c^2-2bc)$
$=(a+2b)[2b(a-c)-c(a-c)]$
$=(a+2b)(2b-c)(a-c)$
c)
$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$
$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$
Lời giải:
a)
$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$
$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$
$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$
$=(y+z)(yz+xz-xy-x^2)$
$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$
b)
$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$
$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$
$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$
$=(a+2b)(2ab-ac+c^2-2bc)$
$=(a+2b)[2b(a-c)-c(a-c)]$
$=(a+2b)(2b-c)(a-c)$
c)
$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$
$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$
Ta có: (b^2 +c^2 -a^2)^2 -4b^2 .c^2
=(b^2 +c^2 -a^2)^2 -(2bc)^2
=(b^2 +c^2 -a^2 -2bc)(b^2 +c^2 -a^2 +2bc)
=(b^2 +c^2 -2bc -a^2) (b^2 +c^2 +2bc -a^2)
=[ (b-c)^2 -a^2] [(b+c)^2 -a^2]
=(b-c-a)(b-c+a)(b+c-a)(b+c+a)
Áp dụng bất đẳng thức tam giác, ta được: b-c-a<0 ,b-c+a>0 ,b+c-a>0 và b+c+a>0
Do đó: (b-c-a)(b-c+a)(b+c-a)(b+c+a)<0
Vậy (b^2 +c^2 -a^2)- 4b^2 .c^2 <0
Chúc bạn học tốt.
a) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(b+c+a\right)\left(b+c-a\right)\left(a+b-c\right)\left(a-b+c\right)\)
b) \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
c) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b+3\right)\left(a-b-3\right)\)
d) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18+4x^2+3x\right)\left(4x^2-3x-18-4x^2-3x\right)\)
\(=\left(8x^2-18\right)\left(-6x-18\right)\)
\(=\left[2\left(4x^2-9\right)\right]\left[-6\left(x+3\right)\right]\)
\(=12\left(2x+3\right)\left(2x-3\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử?
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left[\left(2bc\right)-\left(b^2+c^2-a^2\right)\right]\left[2bc+b^2+c^2-a^2\right]\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)