Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ mỗi vế cho 1, ta có:
\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)
\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)
tự thay vào
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Ta có:
\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{3a}{3b}=\frac{3c}{3d}\)=>\(\frac{3a}{3c}=\frac{3b}{3d}\) ; \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{4a}{4b}=\frac{4c}{4d}\)=>\(\frac{4a}{4c}=\frac{4b}{4d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{3b}{3d}=\frac{3a+3b}{3c+3d}\) ; \(\frac{4a}{4c}=\frac{4b}{4d}=\frac{4a+4b}{4c+4d}\)
Mà \(\frac{3a}{3b}=\frac{3b}{3d}=\frac{4a}{4c}=\frac{4b}{4d}\)
=>\(\frac{3a+3b}{3c+3d}=\frac{4a+4b}{4c+4d}\)
\(\frac{4a}{b}=\frac{4b}{c}=\frac{4c}{a}=\frac{4a+4b+4c}{b+c+a}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
=> 4b=4a =>b=a
=> 4b=4c => b=c
=> a=b=c