Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a,b hình như nhầm đề mình tự sửa nha ;-;
a, Ta có : \(\left(x^2-x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x^2-3x+2x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+2\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(\left(x+2\right)^2+1\right)\)
b, Ta có : \(\left(x^2-x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x^2+4x-5x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(x-5\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(\left(x-5\right)^2+1\right)\)
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
\(4a^2+5-4a+b^2>2b\)
\(\Rightarrow4a^2+5-4a+b^2-2b>0\)
\(\Rightarrow\left(4a^2-4a+1\right)+\left(b^2-2b+1\right)+3>0\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3>0\)
Dễ thấy: \(\left(2a-1\right)^2\ge0\forall a;\left(b-1\right)^2\ge0\forall b\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2\ge0\forall a,b\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3\ge3>0\forall a,b\)
1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)
2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)
3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
Phân tích đa thức sau thành nhân tử:
M=(a^2+b^2-c^2)^2 - 4a^2b^2
Giúp mình với nha! Mình đang cần gấp
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(=\left(\left(a^2-2ab+b^2\right)-c^2\right)\left(\left(a^2+2ab+b^2\right)-c^2\right)\)
\(=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2
= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b