Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
B=1,4 .15/49 - (4/5+2/3) :2 1/5
B=7/5.15/49 - 22/15 : 11/5
B=3/7 - 2/3
B=-5/21
Chúc bạn học tốt!
\(\Leftrightarrow\left[3x+6-23\right]\cdot\left(9-8+20\cdot0\right)=147\)
=>3x=164
hay x=164/3
|x-4|-7=11
|x-4| =11-7
|x-4| =18
TH1:x-4=18
x=18+4
x=22
TH2: x-4=-18
x= -18+4
x= -14
ok:
(2x+24).53=4.55
(2x+24)=4.55:53
(2x+24)=4.52
(2x+24)=100
2x=100-16
2x=84
x=84:2
x=42
2x+24).53=4.55 (2x+24)=4.55:53 (2x+24)=4.52 (2x+24)=100 2x=100-16 2x=84 x=84:2 x=42
Lời giải:
a. $x\in \left\{-6; -5; -4; -3; -2; -1; 0; 1;2;3;4;5\right\}$
Tổng các số nguyên $x$ là:
$(-6)+(-5)+....+0+1+2+...+5=-6$
b. $x\in \left\{-6; -5; -4; -3; -2; -1;0; 1;2;3;4\right\}$
Tổng các số nguyên $x$ là:
$(-6)+(-5)+....+0+1+...+4=-11$
3x : 3 = 81
=> 3x = 81 . 3 = 243 = 35
=> x = 5
22x : 8 = 128
=> 22x = 128 . 8 = 1024 = 210
=> 2x = 10
=> x = 10 : 2
=> x = 5
7x-1 . 49 = 343
7x-1 = 343 : 49 = 7 = 71
=> x - 1 = 1
=> x = 1+1
=> x = 2
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right):\frac{919191}{808080}\)
\(=\left(\frac{1}{2}:4\right):\frac{919191}{808080}=\frac{1}{8}\cdot\frac{808080}{919191}=\frac{10}{91}\)
Bài giải
\(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}\text{ : }\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{919191}{808080}\)
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}\text{ : }\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{91}{80}\)
\(=\left(\frac{1}{2}\text{ : }\frac{4}{1}\right)\text{ : }\frac{91}{80}=\frac{1}{8}\text{ : }\frac{91}{80}=\frac{10}{91}\)
= (7^2)^3 x 7^4 x (7^3)^5
= 7^6 x 7^4 x 7^15
= 7^25
\(49^3.7^4.343^5\)
\(=\left(7^2\right)^3.7^4.\left(7^3\right)^5\)
\(=7^{2.3}.7^4.7^{3.5}\)
\(=7^6.7^4.7^{15}\)
\(=7^{6+4+15}\)
\(=7^{25}\)