Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{7}:\dfrac{1}{4}-\dfrac{1}{7}=\dfrac{2}{7}x\dfrac{4}{1}-\dfrac{1}{7}=\dfrac{8}{7}-\dfrac{1}{7}=\dfrac{7}{7}=1\)
\(\dfrac{7}{11}x0+\dfrac{5}{9}:\dfrac{1}{2}=0+\dfrac{5}{9}x\dfrac{2}{1}=\dfrac{10}{9}\)
\(\left(\dfrac{3}{7}+\dfrac{1}{4}\right):\dfrac{3}{4}=\left(\dfrac{12}{28}+\dfrac{7}{28}\right)x\dfrac{4}{3}=\dfrac{19}{28}x\dfrac{4}{3}=\dfrac{19}{21}\)
\(\dfrac{4}{3}x\dfrac{1}{2}+\dfrac{7}{2}:\dfrac{1}{4}=\dfrac{4}{6}+\dfrac{7}{2}x\dfrac{4}{1}=\dfrac{2}{3}+\dfrac{14}{1}=\dfrac{2}{3}+14=14\dfrac{2}{3}=\dfrac{44}{3}\)
a, \(\dfrac{7}{8}\) \(\times\) \(\dfrac{3}{13}\) + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{4}{13}\)
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{21}{8}\) + \(\dfrac{16}{9}\))
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{189}{72}\) + \(\dfrac{128}{72}\))
= \(\dfrac{1}{13}\) \(\times\) \(\dfrac{317}{73}\)
= \(\dfrac{317}{949}\)
b, \(\dfrac{6}{5}\) + \(\dfrac{7}{3}\) + \(\dfrac{8}{9}\)
= \(\dfrac{54}{45}\) + \(\dfrac{105}{45}\) + \(\dfrac{40}{45}\)
= \(\dfrac{199}{45}\)
c, 23 : \(\dfrac{5}{14}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{322}{5}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{20286}{315}\) + \(\dfrac{270}{315}\) + \(\dfrac{140}{315}\)
= \(\dfrac{20696}{315}\)
d, 4\(\dfrac{1}{4}\) + 7\(\dfrac{3}{7}\) - 2\(\dfrac{4}{17}\)
= 4 + \(\dfrac{1}{4}\) + 7 + \(\dfrac{3}{7}\) - 2 - \(\dfrac{4}{17}\)
= (4+7-2) + (\(\dfrac{1}{4}\) + \(\dfrac{3}{7}\) - \(\dfrac{4}{17}\))
= 9 + \(\dfrac{119}{476}\) + \(\dfrac{204}{476}\) - \(\dfrac{112}{476}\)
= 9\(\dfrac{211}{476}\) = \(\dfrac{4495}{476}\)
e, 8 - (9\(\dfrac{2}{11}\) + \(\dfrac{8}{33}\))
= 8 - 9 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= -1 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= \(\dfrac{-33}{33}\) - \(\dfrac{-6}{33}\) - \(\dfrac{8}{33}\)
= - \(\dfrac{47}{33}\)
1. 41/7 - x = 25/9
=> x = 41/7 - 25/9
=> x = 194/63
2. 3x = 12,8
=> x = 12,8 : 3
=> x = 64/15
3. 41/2 x = 5
=> x = 5: 41/2
=> x = 10/41
4. 3/4 x = 1
=> x = 1: 3/4
=> x = 3/4
5. 4/5 : x = 3
=> x = 4/5 : 3
=> x = 4/15
6. 12/x = 4
=> x = 12/4
=> x = 3
7. 4/7 : x = 4/7
=> x = 4/7 : 4/7
=> x = 1
8. 2x - 3/4 = 7/8
=> 2x = 7/8 + 3/4
=> 2x = 13/8
=> x = 13/8 : 2
=> x =13/16
Ruby Chan :))
1, \(4\frac{1}{7}-x=2\frac{5}{9}\)
\(\frac{4\times7+1}{7}-x=\frac{2\times9+5}{9}\)
\(\frac{29}{7}-x=\frac{23}{9}\)
\(x=\frac{29}{7}-\frac{23}{9}\)
\(x=\frac{261}{63}-\frac{161}{63}\)
\(x=\frac{100}{63}\)
2, \(3\times x=12,18\)
\(x=12,18\div3\)
\(x=4,06\)
3, \(4\frac{1}{2}\times x=5\)
\(\frac{4\times2+1}{2}\times x=5\)
\(\frac{9}{2}\times x=5\)
\(x=5\div\frac{9}{2}\)
\(x=\frac{5\times2}{9}=\frac{10}{9}\)
4, \(\frac{3}{4}\times x=1\)
\(x=1\div\frac{3}{4}\)
\(x=\frac{1\times4}{3}=\frac{4}{3}\)
5, \(\frac{4}{5}\div x=3\)
\(x=\frac{4}{5}\div3\)
\(x=\frac{4}{5\times3}=\frac{4}{15}\)
6,\(\frac{12}{x}=4\)
\(x=12\div4\)
\(x=3\)
7, \(\frac{4}{7}\div x=\frac{4}{7}\)
\(x=\frac{4}{7}\div\frac{4}{7}\)
\(x=1\)
8, \(2x-\frac{3}{4}=\frac{7}{8}\)
\(2x=\frac{7}{8}+\frac{3}{4}\)
\(2x=\frac{7}{8}+\frac{6}{8}\)
\(2x=\frac{13}{8}\)
\(x=\frac{13}{8}\div2\)
\(x=\frac{13}{8\times2}=\frac{13}{16}\)
\(\dfrac{15}{7}:\dfrac{7}{9}-\dfrac{4}{7}\times\dfrac{2}{9}-\dfrac{4}{7}\times\dfrac{4}{9}\)
\(=\dfrac{15}{7}\times\dfrac{9}{7}-\dfrac{4}{7}\times\dfrac{2}{9}-\dfrac{4}{7}\times\dfrac{4}{9}\)
\(=\dfrac{135}{49}-\dfrac{8}{63}-\dfrac{16}{63}\)
\(=\dfrac{1215}{441}-\dfrac{56}{441}-\dfrac{112}{441}\)
\(=\dfrac{1215-56-112}{441}\)
\(=\dfrac{1047}{441}=\dfrac{349}{147}\)
15/7 : 7/9 - 4/7 x 2/9 - 4/7 x 4/9
= 135/49 - 8/63 - 16/63
= 1159/441 - 16/63
= 1047/441 = 349/147
\(A=\dfrac{4}{3x5}+\dfrac{4}{5x7}+\dfrac{4}{7x9}+...+\dfrac{4}{97x99}+\dfrac{4}{99x101}\)
\(A=4x\left(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{97x99}+\dfrac{1}{99x101}\right)\)
\(A=4x\left[\dfrac{1}{2}x\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\dfrac{1}{2}x\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\dfrac{1}{2}x\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\dfrac{1}{2}x\left(\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}x\left(\dfrac{1}{99}-\dfrac{1}{101}\right)\right]\)
\(A=4x\dfrac{1}{2}x\left[\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right]\)
\(A=2x\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2x\dfrac{98}{303}=\dfrac{916}{303}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
a) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{5}{7}\times1\)
\(=\dfrac{5}{7}\)
b) \(\dfrac{1}{10}+\dfrac{5}{9}+\dfrac{4}{9}+\dfrac{9}{10}-1\)
\(=\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{1}{10}+\dfrac{9}{10}-1\right)\)
\(=1+0\)
\(=1\)
c) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}+\dfrac{2}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{2}{7}\)
\(=\dfrac{5}{7}+\dfrac{2}{7}\)
\(=1\)
d) \(\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{4}{7}\)
\(=\left(\dfrac{2}{8}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{4}{7}\right)\)
\(=\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+1\)
\(=\dfrac{1}{2}+1\)
\(=\dfrac{3}{2}\)
e) \(\dfrac{4}{5}+\dfrac{3}{10}+\dfrac{2}{10}+0,7\)
\(=\dfrac{4}{5}+\dfrac{5}{10}+\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{12}{10}\)
\(=\dfrac{4}{5}+\dfrac{6}{5}\)
\(=\dfrac{10}{5}\)
\(=2\)
g) \(362\times728+326\times272\)
\(=326\times\left(728+272\right)\)
\(=326\times1000\)
\(=326000\)
--
0,1428...nhé