Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d ( 1-1/2)x(1-1/3)x(1-1/4)x......x(1-1/2018)
= 1/2x2/3x3/4x...x2017/2018
=\(\frac{1x2x3x....x2017}{2x3x4x....x2018}\)
= \(\frac{1}{2018}\)
e , 1+4+7+...+100
= dãy có số số hạng là
(100-1):3+1=34 ( số số hạng)
tổng là : (100+1 ) x 34 : 2 =1717
=>1717
\(\dfrac{x}{2\times5}+\dfrac{x}{5\times8}+\dfrac{x}{8\times11}+\dfrac{x}{11\times14}+...+\dfrac{x}{32\times35}=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{3}{32\times35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
\(\dfrac{x}{3}=\dfrac{33}{70}:\dfrac{33}{70}\)
\(\dfrac{x}{3}=1\)
\(x=3\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{32\cdot35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
=>x=3
\(\frac{3}{2\times5}+\frac{2}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{602\times605}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+...+\frac{605-602}{602\times605}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{2}-\frac{1}{605}=\frac{603}{1210}\)
\(\frac{4}{3\times7}+\frac{5}{7\times12}+\frac{1}{12\times13}+\frac{2}{13\times15}\)
\(=\frac{7-4}{3\times7}+\frac{12-7}{7\times12}+\frac{13-12}{12\times13}+\frac{15-13}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
= 5-2/2x5+8-5/5x8+11-8/8x11+14-11/11x14
=(1/2-1/5)+(1/5-1/8)+(1/8-1/11)+(1/11-1/14)
=(1/2+1/5+1/8+1/11)-(1/5+1/8+1/11+1/14)
=1/2-1/14
=3/7
Vậy B=3/7
Đặt \(Shin=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{98.101}\)
\(\Rightarrow3Shin=\frac{6}{2}-\frac{6}{5}+\frac{6}{5}-\frac{6}{8}+\frac{6}{8}-\frac{6}{11}+...+\frac{6}{98}-\frac{6}{101}\)
\(\Leftrightarrow3Shin=\frac{6}{2}-\frac{6}{101}=\frac{297}{101}\)
N/t: . là dấu nhân nha! Cái đó lớp 5 chưa biết đâu! Lên cấp 2 mới học. Trong bài làm bạn cứ ghi là dấu " x" thay cho dấu "." của mình nha!
Đặt A = 6/2.5 + 6/5.8 + ... + 6/98.101
=> A = 6.(1/2.5 + 1/5.8 + ... + 1/98.101)
=> 3A = 6.(3/2.5 + 3/5.8 + ... + 3/98.101)
=> 3A = 6.(1/2 - 1/5 + 1/5 - 1/8 + ... + 1/98 - 1/101)
=> 3A = 6.99/202
=> 3A = 297/101
=> A = 99/101
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}\)
\(=\frac{3}{7}\)
3/2x5 + 3/5x8 + 3/8x11 + 3/11x14
= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14
= 3/2 - 3/14
= 21/14 - 3/14
= 18/14
= 9/5
Ta có : \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
\(\Rightarrow S=\frac{3}{7}.\frac{1}{3}=\frac{1}{7}\)
3S= 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/11 - 1/14
3S= 1/2 - 1/14
S= 3/7 / 3
S= 1/7
a) \(\left(457x1234+78695x32325\right)x\left(3456x12341234-1234x34563456\right)\)
\(=\left(457x1234+78695x32325\right)x\left(3456x1234x10001-1234x3456x10001\right)\)
\(=\left(457x1234+78695x32325\right)x0=0\)
b) \(\frac{5}{2x5}+\frac{5}{5x8}+...+\frac{5}{2015x2018}\)
\(=\frac{5}{3}x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{2015}-\frac{1}{2018}\right)\)
\(=\frac{5}{3}x\left(\frac{1}{2}-\frac{1}{2018}\right)\)
\(=\frac{5}{3}x\left(\frac{1}{2}-\frac{1}{2018}\right)=\frac{5}{3}x\frac{504}{1009}=\frac{840}{1009}\)