Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(a\ge1348,b\ge1348\)\(=>ab=1348^2\)
và \(a+b\ge2696=>2022\left(a+b\right)\ge5451312\)
áp dụng BDT Cô si=>\(a^2+b^2+ab\ge3ab=3.1348^2=5451312\)
\(=>a^2+b^2+ab-2022\left(a+b\right)\ge5451312-5451312=0\)
\(=>a^2+b^2+ab\ge2022\left(a+b\right)\). Dấu'=' xảy ra<=>a=b=1348
có a≥1348,b≥1348a≥1348,b≥1348=>ab=13482=>ab=13482
và a+b≥2696=>2022(a+b)≥5451312a+b≥2696=>2022(a+b)≥5451312
áp dụng BDT Cô si=>a2+b2+ab≥3ab=3.13482=5451312a2+b2+ab≥3ab=3.13482=5451312
=>a2+b2+ab−2022(a+b)≥5451312−5451312=0=>a2+b2+ab−2022(a+b)≥5451312−5451312=0
=>a2+b2+ab≥2022(a+b)=>a2+b2+ab≥2022(a+b). Dấu'=' xảy ra<=>a=b=1348
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)
=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)
=> ∠BAD= ∠BCA + ∠DAC
Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC
=> ∠BAD= ∠ADB
=> ΔABD cân tại B
b, Xét ΔABD cân tại B => AB= BD
Xét ΔABC vuông tại A
=> AB²= BH. BC
= (BD- HD). BC
= (AB- 6). 25
= 25 AB- 150
=> AB²- 25AB+ 150= 0
<=> (AB-15)(AB-10)= 0
<=> AB= 15 hoặc AB= 10
Vậy AB= 15cm, hoặc AB= 10 cm
a: \(=\dfrac{\sqrt{2}}{2}\left(cos^252^0+sin^252^0\right)=\dfrac{\sqrt{2}}{2}\)
b: \(=\dfrac{\sqrt{2}}{2}\left(cos^247^0+sin^247^0\right)=\dfrac{\sqrt{2}}{2}\)
-(452-1348)-(348-252)
= - 452 + 1348 - 348 + 252
= (-452+252) + 1348 - 348
= -200 + 1000 = 800