Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^3-8x^2+15x)^2+(3x^2-10x+3)^2=0
=>x^3-8x^2+15x=0 và 3x^2-10x+3=0
=>(3x-1)(x-3)=0 và x(x-3)(x-5)=0
=>x=3
=>A={3}
=>Tổng các phần tử của A là 3
Lời giải:
ĐKXĐ: $x\leq 3$
PT $\Leftrightarrow \sqrt{15-x}=6-\sqrt{3-x}$
$\Rightarrow 15-x=36+3-x-12\sqrt{3-x}$ (bp hai vế)
$\Leftrightarrow 24=12\sqrt{3-x}$
$\Leftrightarrow 2=\sqrt{3-x}$
$\Rightarrow 3-x=4$
$\Leftrightarrow x=-1$ (thỏa mãn)
Thử lại thấy ok nên $x=-1$ là nghiệm duy nhất của pt.
Lời giải:
$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$
Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ
$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$
$\Rightarrow h(1)=0$
$\Leftrightarrow 4m^2+2m-6=0$
$\Leftrightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$
Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$
Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$
Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)
- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)
- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)
\(\Leftrightarrow2x^3=16\)
\(\Leftrightarrow x=2\) ( TM )
Vậy ....
( Chắc đề như vầy :vvv )
bấm máy tính là ra thôi
ko bao giờ ra đâu bạn