Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
a, 100005175327
b, 148904438
c, 10746660
HT
Mình mất 5 phút để giải, bạn mất 1 giây để t.i.c.k, nhớ t.i.c.k mình nhá
Bài 1
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2
\(\dfrac{111}{333}=\dfrac{111:111}{333:111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222:2222}{4444:2222}=\dfrac{1}{2}\)
Do \(3>2\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}\)
Vậy \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
Bài 1.
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98\times99\times...\times2005}{99\times100\times...2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2.
Có: \(\dfrac{111}{333}=\dfrac{111}{3\times111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222}{2\times2222}=\dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
\(\frac{3333}{4444}-\frac{121121}{363363}+\frac{131313}{151515}\)
\(=\frac{3}{4}-\frac{121}{363}+\frac{13}{15}\)
\(=\frac{3}{4}-\frac{1}{3}+\frac{13}{15}\)
\(=\frac{45}{60}-\frac{20}{60}+\frac{42}{60}\)
\(=\frac{45-20+42}{60}\)
\(=\frac{67}{60}\)
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
1+22+333+4444+55555+666666+7777777+88888888+999999999+1010101010
= (1+999999999) + (22+88888888) + (333+7777777) + (4444+666666) + (55555+1010101010)
= 1 000 000 000 + 88888910 + 7778110 + 671110 + 101056565
= 1198394695
chẳng có quy luật gì cả -_-
444+4444+444+4444+4444+4444+.......100 so=44 400
44x100=4400
444+4444+444+4444+4444+4444+.......100 so=44 400
44x100=4400