Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}A=\left(a^4+b^4\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4ab}{2}\right]^2}{2}\\B=\left(c^4+d^4\right)\ge\left(c^2+d^2\right)^2\ge\dfrac{\left[\dfrac{\left(c+d\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4cd}{2}\right]^2}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A\ge\dfrac{\left(2ab\right)^2}{2}\\B\ge\dfrac{\left(2cd\right)^2}{2}\end{matrix}\right.\)(1)
\(\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\)(2)
(1) và (2) \(\Rightarrow A+B\ge\dfrac{\left(2ab\right)^2+\left(2cd\right)^2}{2}\ge\dfrac{2\left(4abcd\right)}{2}=4abcd\)
đẳng thức khi a=b=c=d
Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra khi \(\left(a-b\right)^2=0\Rightarrow a=b\)
Vậy ta có: \(a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\)
\(c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\)
Cộng theo vế 2 BĐT trên ta có:
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)
Lại có: \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\left(cd\right)^2}=2abcd\)
\(\Rightarrow2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)
\(\Rightarrow VT=a^4+b^4+c^4+d^4\ge4abcd=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\\\left(ab\right)^2=\left(cd\right)^2\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}a=b\\c=d\\ab=cd\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)
\(\sin^4x+\cos^4x=\dfrac{\cos4x+3}{4}\)
\(\Leftrightarrow\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=\dfrac{\cos4x+3}{4}\)
\(\Leftrightarrow\dfrac{1-\cos4x}{4}=2\sin^2x.\cos^2x\)
\(\Leftrightarrow\dfrac{1-\cos4x}{2}=\left(2\sin x.\cos x\right)^2\)
\(\Leftrightarrow2\sin^22x=\sin^22x\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=0\\\sin2x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\kappa\pi}{2}\\x=\dfrac{\pi}{12}+\kappa\pi\left(\kappa\in Z\right)\\x=\dfrac{5\pi}{12}+\kappa\pi\end{matrix}\right.\)
a/ \(sin^4x-cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)=1\)
\(\Leftrightarrow-cos2x=1\)
\(\Rightarrow cos2x=-1\)
\(\Rightarrow2x=\pi+k2\pi\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
b/ \(sin^4x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1\)
\(\Leftrightarrow sin^2x.cos^2x=0\)
\(\Leftrightarrow sin2x=0\)
\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
= 16
HT
= 16 nha