Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(\Leftrightarrow2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)
\(\Leftrightarrow2\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)
\(\Leftrightarrow2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(\Leftrightarrow-2x^2y^2-x^4-y^4\)
\(\Leftrightarrow-\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow-\left(x^2+y^2\right)^2\)
\(\Leftrightarrow-1\)
Vậy ...
b) \(2x^4-y^4+x^2y^2+3y^2\)
\(=x^4-y^4+x^4+x^2y^2+3y^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)+x^2\left(x^2+y^2\right)+3y^2\)
\(=x^2-y^2+x^2+3y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)\)
\(=2\)
Vậy ...
Đặt \(a=x^4;b=y^4\)=> a+b=1
=> \(3x^8+4x^4y^4+y^8+2y^4=3a^2+4ab+b^2+2b=2\left(a^2+2ab+b^2\right)+\left(a^2-b^2+2b\right)=2\left(a+b\right)^2+\left(a-b\right)\left(a+1\right)+2b=2\left(a+b\right)^2+\left(a+b\right)=2+1=3\)
\(\hept{\begin{cases}x^2+y^2=4-xy\\\left(x^2+y^2\right)^2-x^2y^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}...\\\left(4-xy\right)^2-x^2y^2=8\Leftrightarrow xy=1.\end{cases}.}}\)
\(\hept{\begin{cases}x^2+y^2=3\\x^4+y^4=7\end{cases}}\left(xy=1\right)\Leftrightarrow7.3=\left(x^4+y^4\right)\left(x^2+y^2\right)=x^6+y^6+x^2y^2\left(x^2+y^2\right)=x^6+y^6+3.1\\
\Rightarrow x^6+y^6=7.3-3=18.\)
=> \(\Rightarrow x^6+y^6+x^2y^2=18+1=19..\)
p/s: Sai sót gì thông cảm :3
x4 + y4 + (x + y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 + 4xy3 + y4
= 2x4 + 2y4 + 4x2y2 + 4x3y + 4xy3 + 2x2y2
= 2(x4 + y4 + 2x2y2) + 4xy(x2 + y2) + 2x2y2
= 2(x2 + y2)2 + 4xy(x2 + y2) + 2x2y2
= \(2\left [ (x^{2} + y^{2}) + 2xy(x^{2} + y^{2}) + x^{2}y^{2} \right ]\)
= 2(x2 + xy + y2)2 (đpcm)
\(2x^{2014}+1005\ge1007\sqrt[1007]{x^{4028}}=1007x^4\)
\(\Leftrightarrow x^{2014}\ge\frac{1007x^4-1005}{2}\)
\(\Rightarrow3\ge\frac{1007\left(x^4+y^4+z^4\right)-3.1005}{2}\)
\(\Rightarrow x^4+y^4+z^4\le3\)
Xy-4=562323 : 43242=162323.4919=(42)2323.4919=44646.4919=45565
Vậy x=4 , y-4=5565
Suy ra x=4, y=5569