K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(43+\left(9-21\right)=317-\left(x+317\right)\)

\(43+9-21=317-x-317\)

\(31=317-317-x\)

\(31=0-x\)

\(\Rightarrow x+0=-31\)

\(x=\left(-31\right)-0\)

\(x=-31\)

30 tháng 6 2017

\(43+\left(9-21\right)=317-\left(x+317\right)\)

\(43+\left(-12\right)=317+x-317\)

\(31=317+x+\left(-317\right)\)

\(31=317+\left(-317\right)+x\)

\(31=0+x\)

\(31=x\)

\(\Leftrightarrow x=31\)

Vậy \(x=31\) là giá trị cần tìm

b: \(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{13}{4}=\dfrac{-5}{7}+\dfrac{13}{4}=\dfrac{-20+91}{28}=\dfrac{71}{28}\)

c: \(=\dfrac{146}{13}-3-\dfrac{68}{13}=6-3=3\)

d: \(=\dfrac{2}{7}\left(\dfrac{21}{4}-\dfrac{13}{4}\right)=\dfrac{4}{7}\)

15 tháng 2 2019

Ta thấy:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Áp dụng bất đẳng thức Cô – si ta có:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Cộng vế với vế ta được:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Dấu “=” xảy ra khi và chỉ khi x - 1 = 2 ⇔ x = 3

Vậy x = 3 là nghiệm của phương trình.

1: \(=75\left(27+25-2\right)=75\cdot50=3750\)

2: \(=15\left(23+37\right)+55=15\cdot60+55=955\)

3: \(=36\cdot14+36\cdot17+36\cdot69\)

\(=36\cdot100=3600\)

4: \(=200\cdot\left(32+68\right)=200\cdot100=20000\)

NV
29 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)

\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)

\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)

\(\Leftrightarrow\sqrt{9+2x}< 4\)

\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)

Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)

23 tháng 11 2017

a,\(\left|9+x\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}9+x=2x\\9x+x=-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9=x\\9=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)

Vậy...

Trường hợp 2 chưa chắc chắn lắm!!!

23 tháng 11 2017

a) \(\left|9+x\right|=2x\)

Xét trường hợp 1:

\(9+x=2x\)

\(\Leftrightarrow9+x-2x=0\)

\(\Leftrightarrow9-x=0\)

\(\Leftrightarrow x=9\)

Xét trường hợp 2:

\(9+x=-2x\)

\(\Leftrightarrow9+x-\left(-2x\right)=0\)

\(\Leftrightarrow9+x+2x=0\)

\(\Leftrightarrow9+3x=0\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-9:3\)

\(\Leftrightarrow x=-3\)

Vậy x=9 hoặc x=-3

b) \(\left|x+6\right|-9=2x\)

\(\Leftrightarrow\left|x+6\right|=2x+9\)

Xét trường hợp 1:

\(x+6=2x+9\)

\(\Leftrightarrow x+6-\left(2x+9\right)=0\)

\(\Leftrightarrow x+6-2x-9=0\)

\(\Leftrightarrow-3-x=0\)

\(\Leftrightarrow x=-3\)

Xét trường hợp 2:

\(x+6=-\left(2x+9\right)\)

\(\Leftrightarrow x+6-\left[-\left(2x+9\right)\right]=0\)

\(\Leftrightarrow x+6+\left(2x+9\right)=0\)

\(\Leftrightarrow x+6+2x+9=0\)

\(\Leftrightarrow3x+15=0\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-15:3\)

\(\Leftrightarrow x=-5\)

Vậy x=-3 hoặc x=-5

6 tháng 12 2019

Chọn A.

19 tháng 3 2022

ĐKXĐ: -21\(\le x\le\)21

Đặt \(\left\{{}\begin{matrix}\sqrt{21+x}=a\\\sqrt{21-x}=b\end{matrix}\right.\left(a,b\ge0\right)\) (a\(\ne\)b)

Ta có \(\left\{{}\begin{matrix}21+x=a^2\\21-x=b^2\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}a^2+b^2=42\\a^2-b^2=2x\end{matrix}\right.\)

Pt đã cho trở thành \(\dfrac{a+b}{a-b}=\dfrac{a^2+b^2}{a^2-b^2}\)

<=> \(\left(a+b\right)^2\)(a-b)=(\(a^2+b^2\))(a-b)

<=> (a-b)2ab=0

\(\text{​​}\text{​​}\left[{}\begin{matrix}a=b\left(loai\right)\\a=0\left(tm\right)\\b=0\left(tm\right)\end{matrix}\right.\)

Thay vào ta tìm dc S=\(\left\{21,-21\right\}\)