
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1+1/2/+1/4+1/8+...+1/1024
=1+(1-1/2)+(1/2-1/4)+(1/4-1/8)+...(1/512-1/1024)
=1+1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024
=1+1-1/1024
=2-1/1024
=2047/1024

C= [1-\(\frac{1}{2}\)]+[1-\(\frac{1}{4}\)]+.....+[1-\(\frac{1}{2014}\)]
C=\(\frac{1}{2}\)+ \(\frac{3}{4}\)+.........+\(\frac{2013}{2014}\)
C= \(\frac{1}{2}\)-\(\frac{1}{2}\)+\(\frac{5}{4}\)-\(\frac{5}{4}\)+\(\frac{25}{12}\)-\(\frac{25}{12}\)+\(\frac{48}{49}\)-\(\frac{48}{49}\)+......+\(\frac{4056195}{4056196}\)
C=\(\frac{4056195}{4056196}\)

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ

\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^{10}}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
10 số 1
\(K=10-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt B
\(B=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2B-B=1-\frac{1}{2^{10}}\)
\(B=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(K=10-\frac{1023}{1024}=\frac{9217}{1024}\)
Số to wa ak
\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(K=10-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(2K=20-\left(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\right)\)
\(4^{2x+1}=1024\)
\(\Rightarrow4^{2x+1}=4^5\)
⇒ 2x + 1 = 5
2x = 5 - 1
2x = 4
x = 4 : 2
x = 2
Vậy x = 2
\(4^{2x+1}\) = 1024
(2\(^2\))\(^{2x+1}\) = \(2^{10}\)
\(2^{4x+2}\) = 2\(^{10}\)
4\(x+2\) = 10
4\(x\) = 10 - 2
4\(x\) = 8
\(x\) = 8 : 4
\(x=2\)
Vậy \(x=2\)