Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
((3\(^2\)))\(^2\) - ((-5\(^2\)))\(^2\) + ((-2\(^3\)))\(^2\)
= 81 - 625 + 64
= -544+ 64
= -480
2\(^4\) + 8[(-2)\(^2\) :\(\dfrac{1}{2}\)]\(^0\) - 2\(^{-2}\). 4 + (-2)\(^2\)
= 16+ 8.1 - \(\dfrac{1}{4}\). 4 + 4
= 16+ 8- 1+4
= 27
2\(^4\) + 3(\(\dfrac{1}{2}\))\(^0\) + 2\(^{-2}\).8 + [(-2)\(^3\). \(\dfrac{1}{2^4}\)].2 - \(\dfrac{1}{2}\)
= 16 + 3.1 +\(\dfrac{1}{4}\).8 + [(-8).\(\dfrac{1}{16}\)].2 -\(\dfrac{1}{2}\)
= 16 + 3+ 2 + \(\dfrac{-1}{2}\).2- \(\dfrac{1}{2}\)
= 21 + (-1)- \(\dfrac{1}{2}\)
= 20-\(\dfrac{1}{2}\) = \(\dfrac{40}{2}\) - \(\dfrac{1}{2}\)= \(\dfrac{39}{2}\)
\(\dfrac{15^{10}.5^{10}}{75^{10}}\) + \(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
= \(\dfrac{\left(15.5\right)^{10}}{75^{10}}\) + \(\dfrac{\left(0,4.2\right)^5}{\left(0.4\right)^6}\)
= \(\dfrac{75^{10}}{75^{10}}\) + \(\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)
= 1 + \(\dfrac{2^5}{0,4}\) = 1+ 80 = 81
\(\dfrac{2^{13}.9^4}{6^3.8^3}\)
= \(\dfrac{2^{13}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}\) = \(\dfrac{2^{13}.3^8}{2^3.3^3.2^9}\)
= \(\dfrac{2^4.3^5}{2^3}\) = 2.3\(^5\) = 486
y1 và y2 lần lượt bằng 8 và 6
còn x1, x2 lần lượt bằng -4 và -10
tick nhóe!
ahihi
Bài 1 :
a) \(-3+\left(-4\right)-\left(-3\right)+\left(2+7-10\right)=-3-4+3+2+7-10=-5\)
b) \(3-\left(-3+2-7\right)+\left(-4\right)=3+3-2+7-4=7\)
c) \(7+\left(-2-3+7\right)-\left(-2\right)=7-2-3+7+2=17\)
d) \(-\left(-3\right)-\left(-2+3-8\right)+\left(-6\right)=3+2-3+8-6=4\)
Bài 2 :
a) \(x^2-2x-\left(3x-2x\right)=x^2-2x-3x+2x=x^2-3x\)
b) \(-\left(x^2+3x^2\right)-\left(-5x^2+3x\right)=-x^2-3x^2+5x^2-3x=x^2-3x\)
c) \(\left(x-y\right)-\left(x+3y+1\right)=x-y-x-3y-1=-4y-1\)
Bài 1:
a, -3+ (-4) - (-3) + (2 + 7 - 10)
= -3 - 4 + 3 + 2 + 7 - 10
= 5 - 10
= -5.
b, 3 - (-3 + 2 - 7) + (-4)
= 3 + 3 - 2 + 7 - 4
= 11 - 4
= 7
c, 7 + (-2 - 3 + 7) - (-2)
= 7 - 2 - 3 + 7 + 2
= 9 + 2
= 11.
d, - (-3) - (-2 + 3 - 8) + (-6)
= 3 + 2 - 3 + 8 - 6
= 10 - 6
= 4.
Mình chỉ làm bài 1 thôi nhé.
Chúc bạn học tốt!
(-5x2y + 3xy2 + 7) + (-6x2y + 4xy2 - 5)
= -5x2y + 3xy2 + 7 - 6x2y + 4xy2 - 5
= -11x2y + 7xy2 + 2
(2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)
= 2,4x3 - 10x2y + 7x2y - 2,4x3 + 3xy2
= -3x2y + 3xy2
Mình sửa lại câu cuối:
(15x2y - 7xy2 - 6y2) + (2x2 - 12x2y + 7xy2)
= 15x2y - 7xy2 - 6y2 + 2x2 - 12x2y + 7xy2
= 3x2y - 6y2 + 2x2
Chúc bn học tốt!
a, 24-x=32=25
=> 4-x=5
<=> x=-1
b, (x+1,5)2+(y-2,5)10=0
Vì (x+1,5)2\(\ge\)0, (y-2,5)10\(\ge\)0
\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
a)\(2^{4-x}\)=32
=>\(2^{4-x}\)=32=\(2^5\)
=>4-x=5
=>x=4-5=-1
=>x=-1
Đặt \(A=1^2+2^2+3^2+...2015^2\)
\(\Rightarrow A=1.1+2.2+3.3+...+2015.2015\)
\(\Rightarrow A=1\left(2-1\right)+2\left(3-1\right)+3.\left(4-1\right)+...+2015\left(2016-1\right)\)
\(\Rightarrow A=1.2-1+2.3-2+3.4-3+...+2015.2016-2015\)
\(\Rightarrow A=\left(1.2+2.3+3.4+...+2015.2016\right)-\left(1+2+3+...+2015\right)\)
\(\Rightarrow A=\left(1.2+2.3+3.4+...+2015.2016\right)-2031120\)
\(\Rightarrow A+2031120=1.2+2.3+3.4+...+2015.2016\)
\(\Rightarrow3\left(A+2031120\right)=1.2\left(3-0\right)+2.3+\left(4-1\right)+3.4\left(5-2\right)+...+2015.2016\left(2017-2014\right)\)
\(\Rightarrow3A+6093360=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2015.2016.2017-2014.2015.2016\)
\(\Rightarrow3A+6093360=2015.2016.2017\)
\(\Rightarrow3A+6093360=8183538080\)
\(\Rightarrow3A=8177444720\)
\(\Rightarrow A=2725814907\)
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
Nội quy của OLM
bn đọc lại nội quy của olm nhé