Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
\(\Rightarrow\left(4.9\right)^{15}< \left(2.3\right)^n< \left(18.2\right)^{16}\)
\(\Rightarrow36^{15}< 6^n< 36^{16}\)
\(\Rightarrow\left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\)
\(\Rightarrow6^{30}< 6^n< 6^{32}\Rightarrow30< n< 32\)
Mà n là số tự nhiên nên n = 31
Chúc bạn học tốt.
a. \(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< \left(3^2\right)^{16}.2^{16}.2^{16}\)
\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< 3^{32}.2^{32}\)
\(\Rightarrow30< n< 32\)
\(\Rightarrow n=31\)
Vậy : \(n=31\)
\(n=0\Rightarrow b=3\)
Với \(n\ne0\Rightarrow VP⋮2butVT\) ko chia hết cho 2 nên ko thỏa mãn
Vậy \(n=0;b=3\)
Bài 3: Tìm x:
a. \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
b. \(\left(x-2\right)^2=1\)
\(\Rightarrow\) \(\left(x-2\right)^2=1^2\)
=> x - 2 = 1
=> x = 3
c. \(x^{2000}=x\)
=> x = 1
d. \(\left(4x-3\right)^3=-125\)
\(\Rightarrow\left(4x-3\right)^3=\left(-5\right)^3\)
=> 4x - 3 = -5
=> 4x = -2
=> x = \(\dfrac{-1}{2}\)
Bài 2:
1: \(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n\cdot26=650\)
\(\Leftrightarrow5^n=25\)
hay x=2
2: \(32^{-n}\cdot16^n=1024\)
\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)
hay n=-10
13: \(9\cdot27^n=3^5\)
\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)
=>3n=3
hay n=1
C.\(\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^6}{2^{5+}2^5}=\frac{4^6}{3^6}.\frac{6^6}{2^5+2^5}=\frac{24^6}{3^6.\left(2^5+2^5\right)}=\frac{8^6}{2^5.\left(1+1\right)}\)=\(\frac{8^6}{2^6}\)=4^6=4096
\(\left(4.9\right)^{15}<\left(2.3\right)^n<\left(18.2\right)^{16}\)
\(36^{15}<6^n<36^{16}\)
\(\left(6^2\right)^{15}<6^n<\left(6^2\right)^{16}\)
\(6^{30}<6^n<6^{32}\)
\(\Rightarrow30
\(\Rightarrow n=31\)