Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2.(x+3)-3(x+4)=1
<=> 2x + 6 - 3x - 12 = 1
<=> -x - 6 = 1
<=> -x = 7
<=> x = -7
Vậy x = -7
a/ Biến đổi đẳng thức đầu bài, ta được:
x2+2x-2x2=4\(\Leftrightarrow\)-x2+2x-4=0\(\Leftrightarrow\)x2-2x+4=0
\(\Leftrightarrow\)(x2-x)-(x-1)+3=0\(\Leftrightarrow\)x(x-1)-(x-1)+3=0\(\Leftrightarrow\)(x-1)2+3=0\(\Leftrightarrow\)(x-1)2=-3 (đẳng thức này không xảy ra với mọi số thực x)
Vậy không có giá trị nào của x thỏa mãn đề bài
b/ Biến đổi đẳng thức đầu bài, ta được:
2x+6-3x-12=1\(\Leftrightarrow\)-x-7=0\(\Leftrightarrow\)x=-7
Vậy giá trị của x cần tìm là -7
\(f\left(x\right)-g\left(x\right)=\left(x^5-3x^2+x^3-x^2-2x+5\right)-\left(x^2-3x+1+x^2-x^4+x^5\right)\)
\(f\left(x\right)-g\left(x\right)=x^5-3x^2+x^3-x^2-2x+5-x^2+3x-1-x^2+x^4-x^5\)
\(f\left(x\right)-g\left(x\right)=\left(x^5-x^5\right)+\left(-3x^2-x^2-x^2-x^2\right)+x^3+\left(-2x+3x\right)+\left(5-1\right)+x^4\)
\(f\left(x\right)-g\left(x\right)=-6x^2+x^3+x+4+x^4\)
\(f\left(x\right)-g\left(x\right)=x^4+x^3-6x^2+x+4\)
\(A=\frac{1}{3}x^3y^4-xy+\frac{1}{6}x^3y^4+3xy-\frac{1}{2}x^3y^4-1\)
\(=\left(\frac{1}{3}x^3y^4+\frac{1}{6}x^3y^4-\frac{1}{2}x^3y^4\right)+\left(3xy-xy\right)-1\)
\(=2xy-1\)
Thay x = 2016 ; y = -1/2016 vào A ta được :
\(A=2\cdot2016\cdot\left(-\frac{1}{2016}\right)-1\)
\(=-2-1\)
\(=-3\)
Vậy giá trị của A = -3 khi x = 2016 ; y = -1/2016
\(x^2\) + (\(x\) + 2)(11\(x\) - 7) = 4
(\(x\) + 2)(11\(x\) - 7) + \(x^2\) - 4 = 0
(\(x+2\))(11\(x-7\)) + (\(x-2\))(\(x+2\)) = 0
(\(x+2\))(11\(x\) - 7 + \(x-2\)) = 0
(\(x\) + 2)(12\(x\) - 9) = 0
\(\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=\dfrac{9}{12}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(\left(x-4\right)^4=\left(x-4\right)^2\\ \Rightarrow\left(x-4\right)^2\left[\left(x-4\right)^2-1\right]=0\\ \Rightarrow\left(x-4\right)\left(x-4-1\right)\left(x-4+1\right)=0\\ \Rightarrow\left(x-4\right)\left(x-5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\\x=5\end{matrix}\right.\)
4(x2-1) = x+ 4x2
4x2 - 4 = x + 4x2
-4 = x
=> x = -4
Nếu đúng thì like giúp mik nhé. Thx bạn