
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Dạng 3 :
a) 3x - 10 = 2x + 13
=> 3x - 2x = 13 - 10
=> x = 3
b) x + 12 = -5 - x
=> x + x = -5 - 12
=> 2x = -17
=> x = -8,5
c) x + 5 = 10 - x
=> x + x = 10 - 5
=> 2x = 5
=> x = 2,5
d) 6x + 23 = 2x - 12
=> 2x - 6x = 23 + 12
=> -4x = 35
=> x = -8,75
e) 12 - x = x + 1
=> x + x = 12 - 1
=> 2x = 11
=> x = 5,5
f) 14 + 4x = 3x + 20
=> 4x - 3x = 20 - 14
=> x = 6

Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)

a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)

\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

\(a,70-5\times\left(x-3\right)=45\)
\(5\times\left(x-3\right)=70-45\)
\(5\times\left(x-3\right)=25\)
\(x-3=25:5\)
x - 3 = 5
x = 5 + 3 = 8
vậy x = 8
\(b,12+\left(5+x\right)=20\)
12 + 5 + x = 20
17 + x = 20
x = 20 - 17 = 3
vậy x = 3
c, 130 - (100 + x) = 25
130 - 100 - x = 25
30 - x = 25
x = 30 - 25 = 5
vậy x = 5
\(g,10+2\times x=4^5:4^3\)
\(10+2\times x=4^2\)
\(10+2\times x=16\)
\(2\times x=16-10\)
\(2\times x=6\)
x = 6 : 2 = 3
vậy x = 3
h, \(14\times x+54=82\)
\(14\times x=82-54\)
\(14\times x=28\)
\(x=28:14=2\)
vậy x = 2
\(k,15\times x-133=17\)
\(15\times x=17+133\)
\(15\times x=150\)
\(x=150:15=10\)
vậy x = 10
\(\left(4-x\right)-2x\left(x-1\right)=x+20\)
=>\(4-x-2x^2+2x-x-20=0\)
=>\(-2x^2-16=0\)
=>\(x^2+8=0\)
mà \(x^2+8\ge8>0\forall x\)
nên x∈∅