Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)
Lại có \(a^2-a=a\left(a-1\right)⋮2\)
Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)
Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)
Giả sử a,b,c,d,e,g đồng thời là lẻ
1 số chính phương lẻ khi chia 8 chỉ dư 1
=>a2+b2+c2+d2+e2 chia 8 dư 5
Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra
Vậy 6 số đã cho ko thể đồng thời là số lẻ
Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương
=>ko tồn tại a,b,c,d,e,g lẻ
Ta có: \(\frac{a}{b}=\frac{14}{22}=\frac{7}{11}\)
Áp dụng tỉ lệ thức \(\Rightarrow\frac{a}{7}=\frac{b}{11}=\frac{a+b}{7+11}=\frac{M}{18}\)(1)
\(\frac{c}{d}=\frac{132}{156}=\frac{11}{13}\Rightarrow\frac{c}{11}=\frac{d}{13}=\frac{c+d}{11+13}=\frac{M}{24}\)(2)
\(\frac{e}{g}=\frac{91}{119}=\frac{13}{17}\Rightarrow\frac{e}{13}=\frac{g}{17}=\frac{M}{13+17}=\frac{M}{30}\)(3)
Từ (1), (2), (3) \(\Rightarrow M\in BC\left(18,24,30\right)\)
Bước tìm BC bn tự tìm nhá ((:
\(BC\left(18,24,30\right)=\left\{0;360;720;1080;...\right\}\)
Mà M là số tự nhiên nhỏ nhất
Vậy M = 1080
a2 = 82
b2 = 172
c2 = 52
d2 = 32
e2 = 82
*Ý kiến riêng mong đc k
*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại
100% đúng nha bạn
Mik đã đi hỏi cô và cô bảo đúng :)
cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy