Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a56 chia hết 35 =>a56 chia hết 5 ;7
Mà a56 ko chia hết 5 (tận cùng là 6)
=>Đề xàm
Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)
\(3B=3^2+3^3+3^4+...+3^{2006}\)
\(3A-A=3^{2006}-3\)
Hay \(2A=3^{2006}-3\)
+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3
b) Ta có: \(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^{101}-3\)
Hay \(2A=3^{101}-3\)
+) theo đề ra, ta có: \(2A+3=3^n\)
\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
Mỏi tay wóa!!! Học tốt nha^^
B1
Có B=3+32+...+32005
=>3B=32+33+...+32006
=>2B=3B-B=32006-3
=>2B+3=32006-3+3=32006
=>Đpcm
B2
Có A=3+32+..+3100
=>3A=32+33+...+3101
=>2A=3A-A=3101-3
=>2A+3=3101-3+3=3101=3n
=>n=101
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
Để : \(\overline{87ab}⋮9\Rightarrow\left(8+7+a+b\right)⋮9\)
\(\Rightarrow\left(15+a+b\right)⋮9\Rightarrow9+\left(6+a+b\right)⋮9\)
Vì \(9⋮9\Rightarrow6+a+b⋮9\)
\(\Rightarrow a+b=3\) hoặc \(a+b=12\)
Mà : a - b = 4
+) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a-b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\in\varnothing\\b\in\varnothing\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}a+b=12\\a-b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=4\end{matrix}\right.\)
Vậy a = 8 ; b = 4 thỏa mãn đề bài
Để \(\overline{87ab}\)\(⋮\) 9 thì ( 8 + 7 + a + b ) sẽ chia hết cho 9
( 8 + 7 + a + b ) = ( 15 + a + b ) = 9 + ( 6 + a + b )
Mà 9 chia hết cho 9 nên ta còn 6 + a + b chia hết cho 9
Để 6 + a + b chia hết cho 9 thì tổng a + b = 3 hoặc 12 ( không thể có số lớn hơn vì 2 số lớn nhất có 1 cs cũng chỉ có tổng là 18 mà 12+9 = 21 , 21>18 nên a+ b = 3 hoặc 12 )
Mà a - b = 4 nên ta có các trường hợp sau :
_Nếu a+ b = 3 thì không thể có a - b = 4 Trường hợp sai
_Nếu a + b = 12 thì :
+) a= 4 hoặc 5 hoặc 6 hoặc 7 hoặc 8 hoặc 9 hoặc ... hoặc 12
+) b= 0 hoặc 1 hoặc 2 hoặc 3 hoặc ... hoặc 8
Mà ta thấy a = 8 , b = 4 là thỏa mãn đầu bài nên a = 8 , b = 4 .
Để 7a5b1 chia hết cho 3
=> 7 + a + 5 + b + 1 chia hết cho 3
=> 13 + a + b chia hết cho 3
Mà a - b = 4
=> a + b > 4
=> a + b\(∈\){5; 8}
TH1: a + b = 5
=> a = 4,5 (không thỏa mãn vì a, b thuộc N)
=> b = 0,5 (không thỏa mãn vì a, b thuộc N)
TH2: a + b = 8
=> a = 6 (Thỏa mãn)
=> b = 2 (thoả mãn)
KL: a = 6; b = 2 để 76521 chia hết cho 3
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)