Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tisnhb chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{270}{9}=30\)
Do đó: a=60; b=90; c=120
Gọi số tiền quyên góp của ba lớp 7A1, 7A2, 7A3 lần lượt là \(a,b,c\)(nghìn đồng) \(a,b,c\inℕ^∗\).
Vì số tiền quyên góp của ba lớp lần lượt tỉ lệ với \(4,5,6\)nên \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\).
Tổng số tiền quyên góp của hai lớp 7A1 và 7A2 nhiều hơn số tiền của lớp 7A3 là \(480\)nghìn đồng nên \(a+b-c=480\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{4+5-6}=\frac{480}{3}=160\)
\(\Leftrightarrow\hept{\begin{cases}a=160.4=640\\b=160.5=800\\c=160.6=960\end{cases}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{240}{12}=20\)
Do đó: a=60; b=80; c=100
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{240}{12}=20\)
Do đó: a=60;b=80; c=100
Số hs của 2 lớp là
35 + 40 = 75(hs)
Mỗi hs góp số tiền là:
1875000 : 75 = 25000(đồng)
Lớp 7A góp số tiền là:
25000 . 35 = 875000(đồng)
Lớp 7B góp số tiền là:
25000 . 40 = 1000000(đồng)
Đ/s: .............................
\(\text{Gọi x;y;z lần lượt là số tiền lớp 7A,7B,7C}\)
(đk:x;y;z\(\in\)N*,đơn vị:triệu đồng)
\(\text{Ta có:}\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\text{ và }x+y+z=30\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y+z}{4+5+6}=\dfrac{30}{15}=2\)
\(\Rightarrow x=2.4=8\text{(triệu đồng)}\)
\(y=2.5=10\text{(triệu đồng)}\)
\(z=2.6=12\text{(triệu đồng)}\)
\(\text{Vậy số tiền lớp 7A là:8 triệu đồng}\)
\(\text{lớp 7B là:10 triệu đồng}\)
\(\text{ lớp 7C là:12 triệu đồng}\)
Gọi số tiền mỗi lớp đã quyên góp được lần lượt là :
x ; y ; z ( nghìn đồng ; x,y,z > 0 )
Số tiền quyên góp được của các lớp 7A, 7B, 7C lần lượt tỉ lệ với 3; 4; 5
=> x,y,z tỉ lệ thuận 3,4,5 => \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\left(1\right)\)
Tổng số tiền quyên góp được là 840 nghìn đồng=> x + y + z = 840 (2)
Từ (1) và (2) áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\dfrac{x}{3}+\dfrac{y}{4}+\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{840}{12}=70\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=70\times3=210\\\dfrac{y}{4}=70\times4=280\\\dfrac{z}{5}=70\times5=350\end{matrix}\right.\) ( nghìn đồng )
Vậy...