\(\dfrac{2+\dfrac{1}{2}}{2-\dfrac{1}{2}}\)

Giúp mình câu này với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 6 2024

\(4-\dfrac{2+\dfrac{1}{2}}{2-\dfrac{1}{2}}=4-\dfrac{\dfrac{4}{2}+\dfrac{1}{2}}{\dfrac{4}{2}-\dfrac{1}{2}}\\ =4-\dfrac{\dfrac{5}{2}}{\dfrac{3}{2}}=4-\dfrac{5}{3}\\ =\dfrac{12}{3}-\dfrac{5}{3}=\dfrac{7}{3}\)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

1 tháng 8 2017

1)

a) \(\frac{x}{6}\)\(\frac{7}{3}\)

\(\Rightarrow\)x.3=6.7

\(\Rightarrow\)x.3=42

\(\Rightarrow\)x   =42:3

\(\Rightarrow\)x   =14

b) làm tương tự như câu a

c) làm tương tự như câu

 d) làm tương tư như câu a nhưng hơi phúc tạp một chút là bn phải đổi ra từ hỗn số ra phân số hoặc số nguyên

e) tương tự câu d

f) làm tương tự như câu d

2)

a) 3x:\(\frac{27}{10}\)=\(\frac{1}{3}\)\(2\frac{1}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{1}{3}\)\(\frac{9}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{4}{27}\)

3x       = \(\frac{4}{27}\)\(\frac{27}{10}\)

3x       = \(\frac{2}{5}\)

 x        = \(\frac{2}{5}\):  3

x         = \(\frac{2}{15}\)

Các câu còn lại bn làm tương tự như câu a nha

3) 

Làm tương tự như bài 2 nha

 mik khuyên bn nếu bn giải bài thì bn nên đổi ra cùng một kiểu số thì tốt hơn như số số thập phân thì thập phân hết ấy

Cuối cùng chúc bn học giỏi

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

27 tháng 6 2017

\(A=\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)+\left(\dfrac{-6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)

\(A=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{2}+\dfrac{4}{3}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{7}{13}+\dfrac{6}{13}\right)+\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)

\(A=1-1+1=1\)

\(B=\left(-1\dfrac{1}{2}:\dfrac{3}{-4}\right).\left(-4\dfrac{1}{2}\right)-\dfrac{1}{4}\)

\(B=\dfrac{-3}{2}:\dfrac{3}{-4}.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=2.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(=-9-\dfrac{1}{4}=\dfrac{-37}{4}\)

27 tháng 6 2017

\(a,A=\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)+\left(-\dfrac{6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)

\(A=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}+\dfrac{-6}{13}+\dfrac{1}{2}+\dfrac{4}{3}\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{7}{13}-\dfrac{6}{13}\right)+\left(-\dfrac{1}{3}+\dfrac{4}{3}\right)\)

\(A=-1+1=0\)

\(b,B=\left(-1\dfrac{1}{2}:\dfrac{3}{-4}\right)\left(-4\dfrac{1}{2}\right)-\dfrac{1}{4}\)

\(B=\left(-\dfrac{3}{2}.\dfrac{-4}{3}\right).\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=8.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=-36-\dfrac{1}{4}\)

B = \(-\dfrac{145}{4}\)

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)

5 tháng 10 2017

\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)

\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)

\(=\dfrac{2}{7}-\dfrac{-220}{567}\)

\(=\dfrac{382}{567}\)

các phần con lại dễ nên bn tự lm đi nhé mk bn lắm

Chúc bạn học tốt!

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

30 tháng 9 2017

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=