Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{\Delta_{ABC}}{\Delta_{DÈF}}=\frac{3}{5}\Rightarrow\frac{12}{\Delta_{DEF}}=\frac{3}{5}\)
\(\Rightarrow\Delta_{DEF}=\frac{3}{5}:\frac{1}{12}=\frac{36}{5}=7,2\)cm
Vậy chu vi tam giác DEF là 7,2 m
\(\text{Ta có:}\)\(\Delta ABC\text{∽}\Delta DEF\)\(\text{theo tỉ số đồng dạng}\)\(k=\frac{3}{5}\)
\(\text{Nửa chu vi}\)\(\Delta ABC\)\(=\)\(\text{nửa chu vi}\)\(\Delta DEF=\frac{3}{5}\)
\(\text{Mà chu vi}\)\(\Delta ABC=12cm\)
\(\text{Nửa chu vi}\)\(\Delta ABC\)\(:\)\(12:2=6cm\)
\(\text{Nửa chu vi}\)\(\Delta DEF\)\(:\)\(6:\frac{3}{5}=10cm\)
\(\text{Chu vi}\)\(\Delta DEF\)\(:\)\(10.2=20cm\)
tam giác ABC đòng dạng vơi tam giác DEF
=> AB/DE = BC/EF = AC/DF = 3/5
ÁP dụng tính chất dãy tỉ số bằng nhau ta có:
AB/DE = BC/EF = AC/DF = (AB + BC + CA)/(DE + EF + DF) = 3/5
=>Chu vi ABC bằng 3/5 chu bi DEF
Xong bạn tự tính chu vi DEF nhé
nha
Cho a',b',c' là số đo cạnh của tam giác A'B'C'
a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là: \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)
A B C A' B' C'
a, Gọi CV tam giác A'B'C' là P', ABC là P
\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)
Áp dụng t/c DTSBN , ta có :
\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)
Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)
A B C D F E H I M N
a, Xét tam giác AFH và tam giác ADB ta có :
^AFH = ^ADB = 900
^A _ chung
Vậy tam giác AFH ~ tam giác ADB ( g.g )
b, Xét tam giác EHC và tam giác FHB ta có :
^EHC = ^FHB ( đối đỉnh )
^CEH = ^BFH = 900
Vậy tam giác EHC ~ tam giác FHB ( g.g )
\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)
c,
đây nhé