\(\frac{x^2}{x^2-4}-\frac{x}{x-2}+\frac{2}{x+2}\)

a, rút gọn

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

a, \(Đkxđ:x\ne\pm2\)

Ta có: \(A=\frac{x^2}{x^2-4}-\frac{x}{x-2}+\frac{2}{x+2}\)

\(=\frac{x^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-x^2-2x+2x-4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)

b, Thay \(x=1\) vào biểu thức \(A\) ta được:

\(A=\frac{-4}{\left(1-2\right)\left(1+2\right)}=\frac{-4}{-1.3}=\frac{4}{3}\)

Vậy ............................

9 tháng 7 2020

a) A = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

A = \(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

A = \(\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

A = \(-\frac{6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

A = \(-\frac{6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}\)

A = \(-\frac{6}{6\left(x-2\right)}\)

A = \(-\frac{1}{x-2}\)

b) |x| = \(\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) với x = 1/2, ta có: 

A = \(-\frac{1}{\frac{1}{2}-2}=\frac{2}{3}\)

+) với x = -1/2, ta có:

A = \(-\frac{1}{\left(-\frac{1}{2}\right)-2}=\frac{2}{5}\)

11 tháng 12 2016

a/

\(A=\frac{3}{x+2}-\frac{2}{2-x}-\frac{8}{x^2-4}\)

\(=\frac{3}{x+2}+\frac{2}{x-2}-\frac{8}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x-6+2x+4-8}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{5x-10}{\left(x+2\right)\left(x-2\right)}=\frac{5}{x+2}\)

b/ Thay x = 3 thì ta được

\(\frac{5}{3+2}=1\)

11 tháng 12 2016

B) biểu thức đó sẽ bằng 1

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

2 tháng 2 2020

a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)

\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)

\(P=x+2\)

b) Ta có :

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)

Vậy \(P\in\left\{7;6\right\}\)

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)a ) Tìm điều kiện của x để biểu thức A có nghĩa b ) Rút gọn biểu thứ A c ) Tìm giá trị của x khi A = 0Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\) a ) Tìm điều kiện của x để biểu thức B có nghĩa b ) Rút gọn biểu thứ B c ) Tìm giá trị của x khi B = 0Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)a ) Tìm x để...
Đọc tiếp

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)

a ) Tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thứ A 

c ) Tìm giá trị của x khi A = 0

Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)\(\frac{9-3x}{x^2-9}\)

 

a ) Tìm điều kiện của x để biểu thức B có nghĩa 

b ) Rút gọn biểu thứ B 

c ) Tìm giá trị của x khi B = 0

Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)

a ) Tìm x để biểu thức A xác định 

b ) Rút gọn biểu thức A 

c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012

d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên 

Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)\(\frac{1}{x-1}\)\(\frac{2}{x^2-1}\)

a ) tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thức A 

C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên 

CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !

5
1 tháng 1 2017

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

1 tháng 1 2017

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0