K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

24 tháng 2 2018

Chọn A

Tam thức : -4x2+ 5x-1 có a= -4 và ∆ = -7< 0 

suy ra -4x2+ 5x-1<0 với mọi x

Do đó h(x)  luôn dương khi và chỉ khi 

f(x) = -x2+ 4( m+1) x+ 1- 4m2 luôn âm

Vậy với m< -5/8 thì biểu thức h(x) luôn dương.

11 tháng 4 2020

1. Ta có : 3x+12=0 <=> x= -4

bảng xét dấu:

x -∞ -4 + ∞
3x+12

- 0 +

f(x) >0 ∀ x ∈ (-4;+∞)

f(x) <0 ∀ x∈ (-∞;-4)

2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)

Bảng xét dấu:

x -∞ 9/5 +∞
-5x+9 + 0 -

f(x) >0 ∀ x ∈ (-∞; 9/5)

f(x) <0 ∀ x ∈(9/5; +∞)

3. Ta có : -3x-9=0 <=> x= -3

x -∞ -3 +∞
-3x-9 + 0 -

f(x) >0 ∀ x∈ (-∞; -3)

f(x) <0 ∀x∈ ( -3; +∞ )

4. Ta có : x (2x+4)=0

+, x=0

+, 2x+4=0 <=> x= -2

x -∞ -2 0 +∞
x - \(|\) - 0 +
2x+4 - 0 + \(|\) +
f (x) + 0 - 0 +

f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)

f(x) <0 ∀ x ∈ (-2;0)

5. Ta có: (x-2)(-x+4)=0

+, x-2=0 <=> x=2

+, -x+4=0 <=> x= 4

x -∞ 2 4 +∞
x-2 - 0 + \(|\) +
-x+4 + \(|\) + 0 -
f(x) - 0 + 0 -

f(x) >0 ∀ x ∈ (2;4)

f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)

6. Ta có : (-4x+3)(x-6)=0

+, -4x+3=0 <=>x= \(\frac{3}{4}\)

+, x-6 =0 <=> x=6

x -∞ 3/4 6 +∞
-4x+3 + 0 - \(|\) -
x-6 - \(|\) - 0 +
f(x) - 0 + 0 -

f(x) >0 ∀ x∈ (3/4;6)

f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)

25 tháng 9 2017

Chọn A.

Tam thức -4 x 2  + 5x - 2 có a = -4 <0, Δ = -7 < 0 suy ra -4 x 2  + 5x - 2 < 0, ∀x

Do đó Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

luôn dương khi và chỉ khi - x 2  + 4(m + 1)x + 1 - 4 m 2  luôn âm

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Vậy với Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) thì biểu thức Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 2) luôn dương.

13 tháng 2 2018

\(1B\backslash2B\backslash3B\)