Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
a,
+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)
+ nếu 2 chia 2 dư 1
=> n có dạng 2k+1
=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)
=> \(n\left(n+5\right)⋮2\forall n\)
vậy.....
b, \(A=4+4^2+4^3+...+4^{2019}\)
\(4A=4^2+4^3+4^4+...+4^{2020}\)
\(3A=4^{2020}-4\)
\(A=\frac{4^{2020}-4}{3}\)
vậy.......
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
Với n= 2k
=> (n+4).(n+7)
= (2k+4).(2k+7)
= 2(k+2)(2k+7) chia hết cho 2 (1)
Với n =2k+1
=> (n+4)(n+7)
= (2k+1+4).(2k+1+7)
= (2k+5).(2k+8)
= (2k+5) . 2(k+4) chia hết cho 2 (2)
Từ (1) và (2)
=> (n+4)(n+7) luôn chia hết cho 2 với mọi n
=> (n+4).(n+7) luôn là số chẵn với mọi N
k cho mk nha
vì n là số tự nhiên , nên n có dạng : 2k hoặc 2k+1.
Nếu n=2k thì (n+4)=2k+4 chia hết cho 2 .
Suy ra : (n+4).(n+7) chia hết cho 2.
Nếu n=2k+1 thì (n+7)=2k+1+7=2k+8 chia hết cho 2.
Suy ra : (n+4).(n+7) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+4).(n+7) chia hết cho 2.
suy
Nếu N lẻ thì n+7 chẵn => Biểu thức chẵn
Nếu N chẵn thì n+4 chẵn => Biểu thức chẵn
=>ĐPCM
*Xét n lẻ=>n+5 chẵn=>n+5 chia hết cho 2
=>n.(n+5) chia hết cho 2
*Xét n chẵn=>n chia hết cho 2
=>n.(n+5) chia hết cho 2
Vậy n.(n+5) chia hết cho 2
Coi n = 2k với k \(\in\) N thì n.(n + 5) = 2k . (2k + 5)
Nếu 2k là lae thì (2k +5) = 1 số chẵn => 1 số chẵn \(\times\) 1 số chẵn = 1 số chẵn chia hết cho 2
Nếu 2k là chẵn thì (2k + 5) = 1 số lẻ => 1 số chẵn \(\times\) 1 số lẻ = 1 số chẵn chia hết cho 2
Vậy với mọi n thì n.(n + 5) đều chia hết cho 2.
2345677