
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(Vì bạn phân số thành một hàng nên có thể mình sẽ giải sai)
a, \(19\dfrac{1}{3}\) . \(\dfrac{3}{7}\) - \(33\dfrac{1}{3}\)
= \(\dfrac{58}{3}\) . \(\dfrac{3}{7}\) - \(\dfrac{100}{3}\)
= \(\dfrac{58.1}{1.7}\) - \(\dfrac{100}{3}\)
= \(\dfrac{58}{7}\) - \(\dfrac{100}{3}\) = \(\dfrac{174}{21}-\dfrac{700}{21}\)
= \(\dfrac{-526}{21}=-25\dfrac{1}{21}\)

a) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)
\(\Leftrightarrow\left|\frac{7}{8}x+\frac{5}{6}\right|=\left|\frac{1}{2}x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}x+\frac{5}{6}=\frac{1}{2}x+5\\\frac{7}{8}x+\frac{5}{6}=-\frac{1}{2}x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{8}x=\frac{25}{6}\\\frac{11}{8}x=-\frac{35}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{100}{9}\\x=-\frac{140}{33}\end{cases}}\)
c) \(\left|7-x\right|=5x+1\)
\(\Leftrightarrow\orbr{\begin{cases}7-x=5x+1\\x-7=5x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=6\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) \(\left|x-y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}}\)
e) \(\left|\left|2x-1\right|+\frac{1}{2}\right|=\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|+\frac{1}{2}=\frac{4}{5}\\\left|2x-1\right|+\frac{1}{2}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|=\frac{3}{10}\\\left|2x-1\right|=-\frac{13}{10}\left(vl\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=\frac{3}{10}\\2x-1=-\frac{3}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{20}\\x=\frac{7}{20}\end{cases}}\)


\(E=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}\)
\(=\frac{1}{2}.\frac{3}{4}\)
\(=\frac{3}{8}\)

Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=4+\frac{1}{1+\frac{1}{1+\frac{2}{\frac{7}{4}}}}\)
\(=4+\frac{1}{1+\frac{1}{1+\frac{8}{7}}}=4+\frac{1}{1+\frac{1}{\frac{15}{7}}}\)
\(=4+\frac{1}{1+\frac{7}{15}}=4+\frac{1}{\frac{22}{15}}\)
\(=4+\frac{15}{22}=\frac{103}{22}\)