![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ
![](https://rs.olm.vn/images/avt/0.png?1311)
$a)$ \(x^{12}:\left(-x\right)^6\)
\(=x^{12}:x^6\)
\(=x^{12-6}\)
\(=x^6\)
$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)
\(=\left(-x\right)^{7-5}\)
\(=\left(-x\right)^2\)
\(=x^2\)
$c)$ \(5x^2y^4:10x^2y\)
\(=\dfrac{1}{2}y^3\)
$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)
\(=\left(-xy\right)^{14-7}\)
\(=\left(-xy\right)^7\)
Các câu còn lại tương tự nha bạn!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(4x^3-3xy^2+2xy\right).\left(-\dfrac{1}{3}x^2y\right)\)
\(=\dfrac{-x}{3y}+\dfrac{y}{x}-\dfrac{2}{3x}\)
\(b,\left(5xy-x^2+y\right)\left(\dfrac{2}{5}xy^2\right)\)
\(=\dfrac{2}{y}-\dfrac{2x}{5y^2}+\dfrac{2}{5xy}\)
c,=\(\dfrac{-4}{3}x^5y+x^3y^3-\dfrac{2}{3}x^3y^2\) b,=\(2x^2y^3-\dfrac{2}{5}x^3y^2+\dfrac{2}{5}xy^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(3x^2\left(4x^3-2x+\dfrac{1}{3}\right)=12x^5-6x^3+x^2\)
b/ \(\left(4x^2+8xy-3xy^2\right)\left(-\dfrac{3}{4}x^2y\right)\)
\(=-3x^4y-6x^3y^2+\dfrac{9}{4}x^3y^3\)
c/ \(4x^3\left(2x^2-x+5\right)5x=20x^4\left(2x^2-x+5\right)\)
\(=40x^6-20x^5+100x^4\)
a, \(3x^2\left(4x^3-2x+\dfrac{1}{3}\right)\)
\(=12x^5-6x^3+x^2\)
b, \(\left(4x^2+8xy-3xy^2\right).\left(\dfrac{-3}{4}x^2y\right)\)
\(=-3x^4y-6x^3y^2+\dfrac{9}{4}x^3y^3\)
c, \(4x^3\left(2x^2-x+5\right)5x\)
\(=\left(8x^5-4x^4+20x^3\right)5x\)
\(=40x^6-20x^5+100x^4=20x^4.\left(2x^2-x+5\right)\)
Chúc bạn học tốt!!! Mình không chắc đâu !
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)
b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)
a) x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
b) x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(e,\)
\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)
\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)
\(f,\)
\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)
\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)
\(g,\)
\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)
\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\((4x^3-3xy^2+3xy)(-\frac{1}{3}x^2y)=4x^3.\frac{-1}{3}x^2y-3xy^2.-\frac{1}{3}x^2y+3xy.\frac{-1}{3}x^2y\)
\(=-\frac{4}{3}x^5y+x^3y^3-x^3y^2\)
Ta có: \(\left(3xy^2+\dfrac{1}{3}x^2y\right)^3\)
\(=\left(3xy^2\right)^3+3\cdot\left(3xy^2\right)^2\cdot\dfrac{1}{3}x^2y+3\cdot3xy^2\cdot\left(\dfrac{1}{3}x^2y\right)^2+\left(\dfrac{1}{3}x^2y\right)^3\)
\(=27x^3y^6+9x^4y^5+x^5y^4+\dfrac{1}{27}x^6y^3\)