Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`(1/2+2x)(2x-3)=0`
\(=>\left[{}\begin{matrix}\dfrac{1}{2}+2x=0\\2x-3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
b)
`1/4-(2x+1/2)^2=0`
`=>(2x+1/2)^2=1/4`
\(=>\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ =>\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
\(a)\) \(\left(x-1\right)\left(2x-3\right)>0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-4>0\\2x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>4\\2x>3\end{cases}\Leftrightarrow}\hept{\begin{cases}x>4\\x>\frac{3}{2}\end{cases}}}\)
\(\Rightarrow\)\(x>4\)
Trường hợp 2 :
\(\hept{\begin{cases}x-4< 0\\2x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\2x< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 4\\x< \frac{3}{2}\end{cases}}}\)
\(\Rightarrow\)\(x< \frac{3}{2}\)
Vậy \(x>4\) hoặc \(x< \frac{3}{2}\)
Chúc bạn học tốt ~
\(b)\) \(\left(x-1\right)\left(2x+5\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1< 0\\2x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\2x>-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 1\\x>\frac{-5}{2}\end{cases}}}\)
\(\Rightarrow\)\(\frac{-5}{2}< x< 1\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1>0\\2x+5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\2x< -5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>1\\x< \frac{-5}{2}\end{cases}}}\) ( loại )
Vậy \(\frac{-5}{2}< x< 1\)
Chúc bạn học tốt ~
\(-3x\times5-2x=0\)
\(-15x-2x=0\)
\(-17x=0\)
\(x=0\)