Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
\(x^2+3y^2+2xy-18\left(x+y\right)=73\)
\(\Leftrightarrow x^2+3y^2+2xy-18x-18y-73=0\)
\(\Leftrightarrow x^2-2\left(9-y\right)x+3y^2-18y-73=0\)
\(\Delta'=\left(9-y\right)^2-\left(3y^2-18y-73\right)\)
\(=81-18y+y^2-3y^2+18y+73\)
\(=-2y^2+154\)
\(=-2\left(y^2-77\right)\)
Phương trình có nghiệm khi \(\)
\(\Delta'\ge0\Leftrightarrow-2\left(y^2-77\right)\ge0\Leftrightarrow y^2-77\le0\)
\(\Leftrightarrow y^2\le77\Leftrightarrow-\sqrt[]{77}\le y\le\sqrt[]{77}\)
Phương trình có 2 nghiệm là
\(\left[{}\begin{matrix}x_1=9-y+\sqrt[]{-2\left(y^2-77\right)}\\x_2=9-y-\sqrt[]{-2\left(y^2-77\right)}\end{matrix}\right.\) \(\left(-\sqrt[]{77}\le y\le\sqrt[]{77}\right)\)
c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)
\(=x^2+x-10\)
x2 - 3y2 + 2xy + 2x - 4y - 7 = 0
<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0
<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0
<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0
<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23
<=> (2x + 2y + 2)2 - (4y + 3)2 = 23
<=> (2x + 6y + 5)(2x - 2y - 1) = 23
Vì \(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\)
Lập bảng :
2x + 6y + 5 | 1 | 23 | -1 | -23 |
2x - 2y - 1 | 23 | 1 | -23 | -1 |
x | 17/2(loại) | 3 | -9 | -7/2(loại) |
y | 2 | 2 |
Vậy (x;y) = (3;2) ; (-9;2)
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
a: Ta có: \(-x^2+3x\)
\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
a)\(A=3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)b) \(A=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
c) \(A=x^2+y^2+2xy+yz+zx=\left(x+y\right)^2+z\left(x+y\right)=\left(x+y\right)\left(x+y+z\right)\)
a) 10x(x-y) - 6y(y-x)
= 10x(x-y) +6y ( x-y)
=(10x+6y) (x-y)
b) 3x2 + 5y - 3xy -5x
= 3x(x-y) + 5(y-x)
= 3x(x-y) -5(x-y)
= (3x-5) ( x-y)
c) 3y2 - 3z2 +3x2 + 6xy
=3(y2 - z2 + x2 + 2xy)
=3[(x2 +2xy+y2)-z2 ]
=3[(x+y)2 - z2 ]
=3(x+y-z) (x+y+z)
d) 16x3 + 54y3
=2(8x3 + 27y3 )
=2[(2x)3 + (3y)3 ]
=2(2x+3y) (4x2 - 6xy + 9y2 )
e) x2 - 25 -2xy+y2
=(x2-2xy+y2)-25
=(x-y)2 -52
=(x-y-5) (x-y+5)
f) (mình chưa làm ra )
{mong m.n bổ sung thêm..}
mấy câu trên bạn kia đã trả lời rồi nên mk k làm lại nx
f, x5 - 3x4 + 3x3 - x2
= x2 (x3 - 3x2 + 3x -1)
= x2 (x - 1)3
Chúc bạn học tốt!
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)