Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)
\(\Rightarrow A=x^3+8-x^3+2\)
\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)
\(\Rightarrow A=10\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(=x^3+8-x^3+2\)
\(=10\)
\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+8\right)\left(x^3-8\right)\)
\(=x^6-64\)
\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
\(=\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\) MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+2x+2x\left(x+1\right)+\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2}{x^2-x+1}\)
b) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{4x^2-2x}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{2x\left(2x-1\right)}\) MTC: \(2x\left(2x-1\right)\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}-\dfrac{3x-2}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(2x-1-6x^2+3x\right)+\left(6x^2-4x\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1-6x^2+3x+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{-1}{2x}\)
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
bạn không ghi yêu cầu nên mình làm như này
1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)
Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)
\(\left(x-3\right).5=5x-15\)
\(\Rightarrow x^2-3x\ne5x-15\)
\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)
Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)
2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)
Ta có: \(x.\left(x-1\right)=x^2-x\)
\(2.\left(x^2+x\right)=2x^2+2x\)
\(\Rightarrow x^2-x\ne2x^2+2x\)
\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)
Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)
\(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)
\(=x^2-x-2\)
\(\Rightarrow2x^2-2\ne x^2-x-2\)
\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)
\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)
Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)
3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)
Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)
\(=5x-1-6x^2\)
\(2x.\left(3x-2\right)=6x^2-4x\)
\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)
\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)
Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)
\(=12x^3-14x^2+4x\)
\(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)
\(=6x^2-7x+2\)
\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)
\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)
\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)
Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)
a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được
b/ Đặt \(\left(x+1\right)^2=t\ge0\)
\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)
c/ ĐKXĐ: bla bla bla...
Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:
\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}-1=t\)
\(\frac{2}{t}-\frac{7}{t+6}=1\)
\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)
\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)
Bấm máy
\(3x(x+1)-2x(x+2)=-1-x\\\Leftrightarrow 3x^2+3x-2x^2-4x=-1-x\\\Leftrightarrow x^2-x=-1-x\\\Leftrightarrow x^2=-1(vô.lí)\)
$\Rightarrow$ Không thể tìm được giá trị nào của $x$ thoả mãn đề bài.