K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2

\(3x=5y=6z\)

\(\Rightarrow\dfrac{3x}{30}=\dfrac{5y}{30}=\dfrac{6z}{30}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-y+z}{10-6+5}=\dfrac{72}{9}=8\)

\(\dfrac{x}{10}=8\Rightarrow x=8.10=80\)

\(\dfrac{y}{6}=8\Rightarrow y=8.6=48\)

\(\dfrac{z}{5}=8\Rightarrow z=8.5=40\)

Vậy x = 80; y = 48; z = 40

5 tháng 1 2021

Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\)  \(\left(k\ne0\right)\)

\(\Rightarrow x=-5k;y=6k;z=-2k\)

\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)

Vậy \(A=\frac{5}{27}\).

12 tháng 7 2018

\(\left|x-\frac{1}{2}\right|+\frac{3}{4}=\left|-1,6+\frac{3}{5}\right|\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}=\left|-1,6+0,6\right|\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}=\left|-1\right|\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}=1\)

\(\Rightarrow\left|x-\frac{1}{2}\right|=1-\frac{3}{4}\)

\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{1}{4}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{4}\\x-\frac{1}{2}=-\frac{1}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{4}\end{cases}}}\)

Vậy ...

12 tháng 7 2018

\(1)\) Ta có : 

\(3x=4y\)\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{6}\)

\(5y=6z\)\(\Leftrightarrow\)\(\frac{y}{6}=\frac{z}{5}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=k\)\(\Rightarrow\)\(\hept{\begin{cases}x=8k\\y=6k\\z=5k\end{cases}}\) \(\left(1\right)\)

Thay \(\left(1\right)\) vào \(xyz=30\) ta được : 

\(8k.6k.5k=30\)

\(\Leftrightarrow\)\(240k^3=30\)

\(\Leftrightarrow\)\(k^3=\frac{30}{240}\)

\(\Leftrightarrow\)\(k^3=\frac{1}{8}\)

\(\Leftrightarrow\)\(k^3=\left(\frac{1}{2}\right)^3\)

\(\Leftrightarrow\)\(k=\frac{1}{2}\)

Suy ra : 

\(x=8k=8.\frac{1}{2}=\frac{8}{2}=4\)

\(y=6k=6.\frac{1}{2}=\frac{6}{2}=3\)

\(z=5k=5.\frac{1}{2}=\frac{5}{2}\)

Vậy \(x=4\)\(;\)\(y=3\) và \(z=\frac{5}{2}\)

Chúc bạn học tốt ~ 

21 tháng 12 2016

ta có: \(\frac{x-1}{5}\) = \(\frac{y-2}{3}\) = \(\frac{z-2}{2}\) => \(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) và 3x-5y+6z =9

Áp dụng t/c ..., ta có:

\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) =\(\frac{\left(3x-5y+6z\right)+\left(-3+10-12\right)}{15-15+12}\) =\(\frac{4}{12}\)=\(\frac{1}{3}\)

\(\frac{x-1}{5}\) =\(\frac{1}{3}\) =>x-1=\(\frac{5}{3}\)=>x=\(\frac{8}{3}\)

\(\frac{y-2}{3}\) = \(\frac{1}{3}\)=>y-2=1 =>y=3

\(\frac{z-2}{2}\) =\(\frac{1}{3}\) =>z-2=\(\frac{2}{3}\) =>z=\(\frac{8}{3}\)

 

 

27 tháng 8 2019

Ta có \(\frac{3x}{4}=\frac{5y}{6}=\frac{6z}{11}\)

=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{6}{5}}=\frac{z}{\frac{11}{6}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{6}{5}}=\frac{z}{\frac{11}{6}}=\frac{x+y+z}{\frac{4}{3}+\frac{6}{5}+\frac{11}{6}}=\frac{-262}{\frac{131}{30}}=-60\)

Đến đây tìm được x,y,z

19 tháng 6 2015

làm như điên mà chả chọn

19 tháng 6 2015

mk nhầm sửa lại:

ta có:

\(3x=4y\Rightarrow\)\(\frac{x}{4}=\frac{y}{3}\)

\(5y=6z\)\(\Rightarrow\frac{y}{6}=\frac{z}{5}\)

\(\frac{x}{4}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\Rightarrow\)\(\frac{x}{24}=\frac{y}{18}=\frac{z}{15}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{24^2}=\frac{y^2}{18^2}=\frac{z^2}{15^2}=\frac{x^2+y^2+z^2}{24^2+18^2+15^2}=\frac{500}{1125}=\frac{4}{9}\)

\(\frac{x^2}{24^2}=\frac{4}{9}\Rightarrow x=\sqrt{\frac{4\cdot24^2}{9}}=16\)

\(\frac{y^2}{18^2}=\frac{4}{9}\Rightarrow y=\sqrt{\frac{4\cdot18^2}{9}}=12\)

\(\frac{z^2}{15^2}=\frac{4}{9}\Rightarrow z=\sqrt{\frac{15^2\cdot4}{9}}=10\)

Vậy x = 16, y = 12, z  = 10

20 tháng 2 2018

CM : ( 3x - 2y )^2010 = 0 ,  / 5y - 6z /^2011 = 0 

=> 3x - 2y = 0    ,  5y - 6z = 0 

=> 3x = 2y     , 5y = 6z 

=> x/2 = y/3    , y/6 = z/5 

=> x/4 = y/6    , y/6 =z/5 

=> x/4 = y/6 = z/5 

=> 2x/ 8 , 5y/30 , 3z/15

Áp dụng tính chất DTSBN , ta có : 

2x/8 = 5y /30 = 3z / 15 = 2x - 5y + 3z / 8 - 30 + 15 = 54/-7 = -54 /7 

Rồi tính ra là xong 

30 tháng 5 2015

nhầm đoạn cuối 54/-7 = -54/7

=> x= -216/7 ; y=-324/7 ; z= -270/7

30 tháng 5 2015

\(\left(3x-2y\right)^{2014}\ge0\) ; \(\left|5y-6z\right|^{2015}\ge0\)

\(\Rightarrow\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}\ge0\)

mà \(\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}=0\)

\(\Rightarrow\left(3x-2y\right)^{2014}=\left|5y-6z\right|^{2015}=0\Rightarrow3x-2y=5y-6z=0\)

\(\Rightarrow3x=2y;5y=6z\)

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\left(1\right)\)

\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{54}{-7}=-\frac{7}{54}\) [áp dụng dãy tỉ số bằng nhau]

=> x= -14/27 ; y= -7/9 ; z= -35/51

2 tháng 12 2016

\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)

\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:

\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)

13 tháng 8 2019

a) Ta có : \(\frac{x}{y}=\frac{2}{3}\) => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{2x}{4}=\frac{3y}{9}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)

=> \(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}}\) => \(\hept{\begin{cases}x=16.2=32\\y=16.3=48\end{cases}}\)

Vậy ...

b) \(\frac{3}{x}=\frac{4}{y}\) => \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{-3x}{-9}=\frac{5y}{20}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)

=> \(\hept{\begin{cases}\frac{x}{3}=3\\\frac{y}{4}=3\end{cases}}\) => \(\hept{\begin{cases}x=3.3=9\\y=3.4=12\end{cases}}\)

Vậy ...

13 tháng 8 2019

a) \(\text{Ta có : }\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{2x}{4}=\frac{3y}{9}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)

\(\Rightarrow\frac{2x}{4}=16\Rightarrow2x=64\Rightarrow x=32\)

\(\Rightarrow\frac{3y}{9}=16\Rightarrow3y=144\Rightarrow y=48\)

\(\text{Vậy }x=32;y=48\)

b) \(\text{Ta có : }\frac{3}{x}=\frac{4}{y}\Leftrightarrow\frac{y}{4}=\frac{x}{3}\Leftrightarrow\frac{5x}{20}=-\frac{3x}{-9}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có : }\frac{5x}{20}=\frac{-3x}{-9}=\frac{5y+\left(-3x\right)}{20+\left(-9\right)}=\frac{33}{11}=3\)

\(\text{Nếu }\frac{-3x}{-9}=3\Rightarrow-3x=-27\Rightarrow x=9\)

\(\text{Nếu}\frac{5y}{20}=3\Rightarrow5y=60\Rightarrow y=12\)

\(\text{Vậy}x=9;y=12\)

c) \(\text{Ta có : }8x=5y\Rightarrow\frac{x}{5}=\frac{y}{8}\Leftrightarrow\frac{2x}{10}=\frac{y}{8}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{10-8}=\frac{-10}{2}=-5\)

\(\text{Nếu }\frac{2x}{10}=-5\Rightarrow2x=-50\Rightarrow x=-25\)

\(\text{Nếu }\frac{y}{8}=-5\Rightarrow y=-40\)

\(\text{Vậy}x=-25;y=-40\)