Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x/2=y/5
<=> 2x/4=y/5=2x+y/4+5=18/9=2
+,x/2=2 => x=4
+, y/5=2 => y=10
g, x/2=y/5
đặt x/2=y/5=k
=> x=2k ; y=5k
ta có 2k.5k=90
k2.10=90
k2=9
=> k=3 k=-3
+, x/2=2=> x=4 x/2=-2 => x=-4
+, y/5=2 => y=10 y/5=-2 => y=-10
CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=10\)
mấy bài còn lại tương tự
Có : a)
xy -x + 2y = 15
x. ( y-1 ) + 2y = 15
x. ( y-1 ) + 2 . (y-1+1) = 15
x. (y-1) + 2. ( y-1) +2 = 15
x . ( y-1) + 2 . ( y-1) = 13
( y-1). ( x+2) = 13
vì x\(\in\)Z => x+2 \(\in\)Z
\(y\in Z\) => y-1 \(\in\)Z
nên ( y-1) ; ( x+2) \(\inƯ\left(13\right)=[\pm1;\pm13]\)
ta có bảng sau
y-1 | 1 | -1 | 13 | -13 |
y | 2 | 0 | 14 | -12 |
x+2 | 13 | -13 | 1 | -1 |
x | 11 | -15 | -1 | -3 |
TM | TM | TM | TM |
vậy (x;y) \(\in\)\([\left(11;2\right);\left(-15;0\right);\left(-1;14\right);\left(-3;-12\right)]\)
b)
x+y=xy
<=> x(y-1)=y
<=> x= y/(y-1)= 1+1/(y-1)
vì x là số nguyên nên \(\frac{1}{y-1}\) là số nguyên
=> 1 chia hết cho y-1
=> y-1 là ước của 1
=> y-1=1 hoặc y-1=-1
=> y=2oặc y=0
với y=2 => x=2
y=0=> x=0
Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:
a) (x+5).(y-3)=0
Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z
Vì (x+5).(y-3)=0
=> x+5=0 hoặc y-3=0
(+) x+5=0
x=0-5
x=-5
(+) y-3=0
y=0+3
y=3
Vậy x=-5 và y thuộc Z
hoặc y=3 và x thuộc Z
Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lun
Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:
B) (x-7).(2+y)=13
Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z
Vì (x-7).(2+y)=13
=> x-7 thuộc Ư(13)
Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)
Do đó: x-7 thuộc{1;13;-1;-13}
Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
\(3x=5y=10z\) <=> \(\frac{x}{10}=\frac{y}{6}=\frac{z}{3}\) hay \(\frac{x}{10}=\frac{2y}{12}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{2y}{12}=\frac{z}{3}=\frac{x-2y+z}{10-12+3}=15\)
đến đây bạn tự tính nốt nhé