Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
f(x)+g(x)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3-x^4-x^2+x^3-x+5-5x^3+x^2+3x^4
=(-3x^2-x^2-x^2+x^2)+(x-x)-(1-5)+(x^4+3x^4-x^4+3x^4)-(x^3-2x^3-x^3+5x^3)
=-4x^2+4+6x^4+3x^3
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
Ta có: | x - 1 | + | x - 4 | = 3x
a. Ta có 2 trường hợp sau:
* Trường hợp 1: Nếu \(x\ge4\)thì:
| x - 1 | + | x - 4 | = x - 1 + x - 4
= 2x - 5
=> 2x - 5 = 3x
=> x = -5 ( loại, vì \(x\ge4\))
* Trường hợp 2: Nếu: \(x\le1\)thì:
| x - 1 | + | x - 4 | = 1 - x + 4 - x
= 5 - 2x
=> 5 - 2x = 3x
=> 5x = 5
=> x = 1 ( thỏa mãn )
Vậy: x = 1
b. \(\left(\frac{1}{2}+3x\right)-\left(0,5+x\right)=4\)
\(\Rightarrow\left(\frac{1}{2}+3x\right)-\left(\frac{1}{2}+x\right)=4\)
\(\Rightarrow\frac{1}{2}+3x-\frac{1}{2}-x=4\)
\(\Rightarrow\left(3x-x\right)+\left(\frac{1}{2}-\frac{1}{2}\right)=4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy: x = 2
l x - 1 l + l x - 4 l = 3 x
(+) với 1 < x ta có :
1 -x + 4- x = 3x
5 - 2x = 3x
5 =5x
1 = x ( loại )
(+) với 1 <= x <= 4 ta có :
x - 1 + 4 -x = 3x
3 = 3 x
1 = x ( TM)
(+) x >=4 ta có :
x - 1 + x - 4 = 3x
2x - 3x = 5
-x = 5
x = -5 (loại)
VẬy x = 1
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
x^5-3*x^2-(7*x^4-9*x^3+x^2-1/4*x+5*x^4-x^5+x^2-2*x^3+3*x^2-1/4)=0
\(\dfrac{3x^4-x^2+1}{x-4}\)
\(=\dfrac{3x^4-12x^3+12x^3-48x^2+47x^2-188x+188x-752+753}{x-4}\)
\(=3x^3+12x^2+47x+188+\dfrac{753}{x-4}\)