Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 +3x+3 min
<=>( x^2 +2x.3/2 + 9/4 ) -9/4 +3
<=> (x+3/2)^2 + 3/4 >= 3/4 ((x+3/2)^2>=0)
dấu "="xảy ra khi x=-3/2
vậy Pmin=3/4 khi x=-3/2
a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)
đkxđ: x khác 3, x khác -3
(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)
=>3x+9 -6x + x2+3x
<=>x2 + 3x-6x+3x + 9
<=>x2 +9
<=>(x-3).(x+3)
1)\(ĐKXĐ:x\ne2;x\ne-2\)
đầu bài..
.\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=x\left(3x-2\right)+1\)
\(\Leftrightarrow-6x^2-11x+2+9x^2-14x-8=3x^2-2x+1\)
\(\Leftrightarrow-23x=7\Leftrightarrow x=-\frac{7}{23}\)(nhận)
Vậy...........
2).......\(ĐKXĐ:x\ne2;x\ne7\)
\(\Rightarrow\left(x+1\right)\left(x-7\right)=x-2\)
\(\Leftrightarrow x^2-6x-7=x-2\)
\(\Leftrightarrow x^2-7x-5=0\)..............
Vậy........
3)ĐKXĐ:\(x\ne1\)
.........\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\Leftrightarrow x=\frac{7}{19}\)(nhận)
4)ĐKXĐ:\(x\ne-1\)
.........\(\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\)
\(\Leftrightarrow15x=5\Leftrightarrow x=\frac{1}{3}\)(nhận)
Vậy...................
a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-1}{2}\)
b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=-\dfrac{3}{x-3}\)
ta có :
\(3x^3-6x+9=3x\left(x^2-2x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-2x+3=0\end{cases}}\)
mà \(x^2-2x+3=\left(x-1\right)^2+2>0\forall x\text{ nên ta có nghiệm duy nhất x=0}\)