Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^1+3^2+...+3^{2006}\)
\(3A=3^2+3^3+...+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
\(2A+3=3^x\)
\(\left(3^{2007}-3\right)+3=3^x\)
\(3^{2007}+\left(-3\right)+3=3^x\)
\(3^{2007}+\left[\left(-3\right)+3\right]=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)
a) A bằng 31+32+33+34+...+32006
3A bằng 3.(31+32+33+34+...+32006)
3A bằng 32+33+34+35+...+32007
3A-A bằng (32+33+34+35+...+32007) - (31+32+33+34+...+32006)
2A bằng 32007-31
A bằng (32007-3) : 2
b) 2A+3 bằng 3x
Thay 2A bằng 32007-3, ta có :
2A+3 bằng 3x
32007-3+3 bằng 3x
32007 bằng 3x
suy ra x bằng 2007
Vậy x bằng 2007
a) \(3\left(4-2x\right)-2\left(x+3\right)=12-7x\)
\(\Leftrightarrow\)\(12-6x-2x-6=12-7x\)
\(\Leftrightarrow\)\(6-8x=12-7x\)
\(\Leftrightarrow\)\(x=-6\)
Vậy...
b) \(\left|16+\right|3\left(x-2\right)||-5=20\)
\(\Leftrightarrow\)\(\left|16+\right|3\left(x-2\right)||=25\)(1)
Ta thấy: \(\left|3\left(x-2\right)\right|\ge0\)\(\Rightarrow\)\(16+\left|3\left(x-2\right)\right|>0\)
nên từ (1) \(\Rightarrow\) \(16+\left|3\left(x-2\right)\right|=25\)
\(\Leftrightarrow\)\(\left|3\left(x-2\right)\right|=9\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}3\left(x-2\right)=9\\3\left(x-2\right)=-9\end{cases}}\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
Vậy....
c) \(\left|-5-3^2\right|-||3x+5|-7.2^3|=3^9:3^7\)
\(\Leftrightarrow\)\(14-||3x+5|-56|=9\)
\(\Leftrightarrow\)\(||3x+5|-56|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|-56=5\\\left|3x+5\right|-56=-5\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|=61\\\left|3x+5\right|=51\end{cases}}\)
đến đây bn giải tiếp nhé
Ta có :
\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}.\frac{1}{225}\)
\(H=\frac{1}{60}\)
Vậy \(H=\frac{1}{60}\)
Chúc bạn học tốt ~
\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)
\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)
\(H=15\cdot\frac{1}{900}\)
\(H=\frac{1}{60}\)
\(5^{x+2}+5^x=650\)
\(\Rightarrow5^x\cdot5^2+5^x=650\)
\(\Rightarrow5^x\left(5^2+1\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25=5^2\)
\(\Rightarrow x=2\)
Vậy x = 2 thì \(5^{x+2}+5^x=650\)
x + 3 + 9 chia hết x + 3
9 chia hết x + 3
x + 3 thuộc Ư ( 9 )
mà Ư (9) = ( 1,3,9 )
hay x + 3 thuộc ( 1,3,9 )
ta có bảng
x + 3 1 3 9
x -2 0 6
ĐG Loại TM TM
Vậy x thuộc ( 0 , 6 )
B = \(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{53.56}\)
B = \(\frac{6-3}{3.6}+\frac{9-6}{6.9}+...+\frac{56-53}{53.56}\)
B = \(\frac{6}{3.6}-\frac{3}{3.6}+...+\frac{56}{53.56}-\frac{53}{53.56}\)
B = \(\frac{1}{3}-\frac{1}{6}+...+\frac{1}{53}-\frac{1}{56}\)
B = \(\frac{1}{3}-\frac{1}{56}\)
B = \(\frac{53}{168}\)
Ta có:
\(B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.11}+...+\frac{3}{53.56}\)
\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{56}\)
\(=\frac{1}{3}-\frac{1}{56}=\frac{53}{168}\)
Vậy B=\(\frac{53}{168}\)
\(\hept{\begin{cases}3^2.\left(-2\right)^3=9.-8=-72\\-58\end{cases}}\) =>\(-72< -58=>3^2.\left(-2\right)^3< -58\)
\(\hept{\begin{cases}\left(-4\right)^3=-64\\\left|-6^2\right|=36\end{cases}=>-64< 36}=>\left(-4\right)^3< \left|-6^2\right|\)
\(3^2.\left(-2\right)^3=9.\left(-8\right)=\left(-72\right)\)
Vì (-72)<(-58) nên 32.(-2)3<(-58)
Có (-4)3 có gt âm
\(|-6^2|\)có gt dương
mà âm luôn luôn < dương
nên (-4)3<\(|-6^2|\)
Ta có x + 2 \(⋮\)3x + 1
=>3x + 6\(⋮\)3x + 1 ( nhân 3 vế trái)
=>3x + 1 + 5 \(⋮\)3x + 1
=>5 \(⋮\)3x + 1
=>3x + 1 thuộc ước của 5 là {-5; -1; 1; 5}
Lập bảng :
3x + 1 | -5 | -1 | 1 | 5 |
3x | -6 | -2 | 0 | 4 |
x | -2 | -2/3 | 0 | 4/3 |
Vì x thuộc Z nên x = -2 hoặc x = 0
x + 2 chia hết cho 3x + 1
=> 3x + 6 chia hết cho 3x + 1
=> 3x + 1 + 5 chia hết cho 3x + 1
=> 5 chia hết cho 3x+ 1
=> 3x + 1 thuộc Ư(5)
=> 3x + 1 thuộc {-1;1;-5;5}
=> 3x thuộc {-2; 0; -6; 4}
=> x thuộc {-2/3;0;-2; 4/3}
mà x thuộc Z
=>x thuộc {0;-2}
Ta có : 3x3 - 43 = 17
=> 3x3 - 64 = 17
=> 3x3 = 81
=> x3 = 27
=> x3 = 33
=> x = 3
\(3x^3-4^3=17 \)
\(3x^3=17+64\)
\(3x^3=81\)
\(x^3=27\)
\(x=3\)