Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2^7+\left(x-3^7\right)=5^7-4^7\)
=>\(128+x-2187=78125-16384\)
=>\(x-2059=61741\)
=>\(x=61741+2059=63800\)
c: \(7^2-\left(x+15\right)=5\cdot2^2\)
=>49-(x+15)=5*4=20
=>x+15=29
=>x=14
d: 7^3-7(13-x)=14
=>343-7(13-x)=14
=>7(13-x)=343-14=329
=>13-x=47
=>x=13-47=-34
\(x:\left[\frac{8}{5}.\left(\frac{2}{3}\right)^2-\frac{2}{5}\right]=\frac{15}{7}+\frac{6}{5}.\left[\left(\frac{15}{7}\right)^2-\frac{50}{49}\right]\)
\(\Rightarrow x:\frac{14}{45}=\frac{15}{7}+\frac{6}{5}.\frac{25}{7}\)
\(\Rightarrow x:\frac{14}{45}=\frac{15}{7}+\frac{30}{7}\)
\(\Rightarrow x:\frac{14}{45}=\frac{45}{7}\)
\(\Rightarrow x=\frac{45}{7}.\frac{14}{45}\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
b)\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)
\(2^x:2+5\cdot2^x:2^2=\frac{7}{32}\)
\(2^x:2+2^x:\frac{4}{5}=\frac{7}{32}\)
\(2^x\cdot\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\)
\(2^x\cdot\frac{7}{4}=\frac{7}{32}\)
\(2^x=\frac{7}{32}:\frac{7}{4}=\frac{1}{8}\)
\(2^x=\frac{2^0}{2^3}=2^{-3}\)
\(\Rightarrow x=-3\)
a) \(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
b) \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{1}{2}+5.2^x.\frac{1}{4}=\frac{7}{32}\)
\(\Rightarrow2^x.\left(\frac{1}{2}+5.\frac{1}{4}\right)=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{7}{4}=\frac{7}{32}\)
\(\Rightarrow2^x=\frac{7}{32}:\frac{7}{4}\)
\(\Rightarrow2^x=\frac{1}{8}\)
\(\Rightarrow2^x=2^{-3}\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)
a, \(\left(x-3\right)^{10}=\left(x-3\right)^{30}\)
\(\Leftrightarrow\left(x-3\right)^{30}-\left(x-3\right)^{10}=0\)
\(\Leftrightarrow\left(x-3\right)^{10}\left[\left(x-3\right)^{20}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^{10}=0\\\left(x-3\right)^{20}-1=0\end{matrix}\right.\)
+) \(\left(x-3\right)^{10}=0\Leftrightarrow x=3\)
+) \(\left(x-3\right)^{20}-1=0\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy...
c, \(2^{x-1}+5.2^{x-2}=7\)
\(\Leftrightarrow2^{x-2}.2+5.2^{x-2}=7\)
\(\Leftrightarrow2^{x-2}\left(2+5\right)=7\)
\(\Leftrightarrow2^{x-2}=1\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy x = 2