\(^{3x^3}\) + \(^{10x^2}\) - 5) : (3x+1)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

\(=\left(3x^3+x^2+9x^2+3x-3x-1-4\right):\left(3x+1\right)\\ =\left[\left(3x+1\right)\left(x^2+3x-1\right)-4\right]:\left(3x+1\right)\\ =x^2+3x-1\left(dư4\right)\)

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@

6 tháng 9 2018

a) \(\left(\dfrac{1}{2}x-3\right)^2=\dfrac{1}{4}x^2-3x+9\)

b) \(\left(5x+1\right)^2=25x^2+10x+1\)

c) \(\left(3-4x\right)^2=9-24x+16x^2\)

d) \(\left(2-\dfrac{1}{2}x\right)^2=4-2x+\dfrac{1}{4}x^2\)

6 tháng 9 2018

e) \(\left(3x-1\right)\left(3x+1\right)=9x^2-1\)

g) \(\left(2a-3\right)^2=4a^2-12a+9\)

h) \(\left(4+3x\right)^2=16+24x+9x^2\)

i) \(\left(7-10x\right)\left(7+10x\right)=49-100x^2\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

23 tháng 2 2020
https://i.imgur.com/fUiVn85.jpg
23 tháng 2 2020

a) \(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{1}{2}\right\}.\)

b) \(\left(\frac{3x}{5}-\frac{1}{3}\right)^2=\left(\frac{x}{5}+\frac{2}{3}\right)^2\)

\(\Leftrightarrow\left(\frac{3x}{5}-\frac{1}{3}\right)^2-\left(\frac{x}{5}+\frac{2}{3}\right)^2=0\)

\(\Leftrightarrow\left(\frac{3x}{5}-\frac{1}{3}-\frac{x}{5}-\frac{2}{3}\right).\left(\frac{3x}{5}-\frac{1}{3}+\frac{x}{5}+\frac{2}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2x}{5}-1\right).\left(\frac{4x}{5}+\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{5}-1=0\\\frac{4x}{5}+\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{5}=1\\\frac{4x}{5}=-\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1.5\\4x=\left(-\frac{1}{3}\right).5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\4x=-\frac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{5}{12}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{5}{2};-\frac{5}{12}\right\}.\)

Chúc bạn học tốt!

14 tháng 10 2018

Mẫu câu đầu 

\(4x^2+4x-5=4x^2+4x+1-6\)

\(=4\left(x^2+x+\frac{1}{4}\right)-9\)

\(=4\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-6\)

\(=4\left(x+\frac{1}{2}\right)^2-6\ge-6\)

Vậy Min A=-6 dấu bằng xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

17 tháng 10 2022

a: \(=4a^2+4a+1-6=\left(2a+1\right)^2-6>=-6\)

Dấu = xảy ra khi a=-1/2

b: \(=-\left(y^2-4y-3\right)\)

\(=-\left(y^2-4y+4-7\right)\)

\(=-\left(y-2\right)^2+7< =7\)

Dấu = xảy ra khi y=2

c: \(=-25x^2+3x\)

\(=-25\left(x^2-\dfrac{3}{25}x\right)\)

\(=-25\left(x^2-2\cdot x\cdot\dfrac{3}{50}+\dfrac{9}{2500}-\dfrac{9}{2500}\right)\)

\(=-25\left(x-\dfrac{3}{50}\right)^2+\dfrac{9}{100}< =\dfrac{9}{100}\)

Dấu = xảy ra khi x=3/50

e: \(=3\left(x^2+\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}\right)\)

\(=3\left(x+\dfrac{7}{6}\right)^2-\dfrac{37}{12}>=-\dfrac{37}{12}\)

Dấu = xảy ra khi x=-7/6

21 tháng 12 2017

A . 5(x-y)-y(x-y)

=(x6-y)(5-y)

B . x^2 - xy - 8x+8y

=(x^2-xy)-(8x-8y))

=x(x-y) - 8(x-y)

C. x^2-10x+25 - y^2

=(x^2 - 10x + 25 ) - y^2

=(x-5)^2 - y^2

=(x-5+y)(x-5-y)

D . x^3 - 3x^2-4x+12

=(x^3 - 3x^2 ) - (4x - 12)

=x^2 (x-3)-4(x-3)

=(x^2-4)(x-3)

=(x+2)(x-2)(x-3)

D . 2x^2-2y^2- 6x-6y

=(2^x - 2y^2) - (6x+ 6y)

=2(x^2 - y^2) - 6(x+y)

=2(x+y)(x-y) - 6(x+y)

=2(x+y)(x-y-3)

E . x^3 - 3x^2 + 3x - 1

=(x-1)^3

D.x^2+3x+2

=x^2+2x+x+2

=(x^2+2x)+(x+2)

=x(x+2)+(x+2)

=(x+2)(x+1)

21 tháng 12 2017

Sai vài chỗ nha bạn! :)

14 tháng 12 2018

a) \(\dfrac{2}{3x+9}-\dfrac{x-3}{3x^2+9x}\)

\(=\dfrac{2}{3\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x}{3x\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x-x+3}{3x\left(x+3\right)}\)

\(=\dfrac{x+3}{3x\left(x+3\right)}\)

\(=\dfrac{1}{3x}\)

b) \(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)

\(=\dfrac{x}{\left(x-1\right).3}\)

\(=\dfrac{x}{3x-3}\)

c) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+99}-\dfrac{1}{x+100}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+100}\)

\(=\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

\(=\dfrac{x+100-x}{x\left(x+100\right)}\)

\(=\dfrac{100}{x\left(x+100\right)}\)