Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)
\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)
bạn lớp 9 đúng k!
vậy đã học hệ pt rồi nhỉ.
đặt xy là a
đặt x+y là b vậy ta biến đổi thành a+b=-1 và a*b=-12 từ đó bạn hãy giải hệ pt ra được a=x+y=-4 và b=x*y=3
bạn lập tiếp hpt tính x,y rồi tính p nhé. chúc thành công
Cho xy+x+y = -1 (1)
x2y+xy2=xy(x+y) (2)
Đặt x+y = a, x.y =b
thay vào (1) và (2) ta có hệ phương trình :
a+b = -1
a.b = -12
a và b sẽ là nghiệm của phương trình: X2 + X -12 = 0
giải ra ta được X1 = -4 ; X2 = 3 => a = -4, b = 3 hoặc a = 3; b = -4
hay x+y = -4, xy = 3 hoặc x+y = 3, xy = -4
Tính P=x3+y3 = (x+y)(x2-xy+y2) = (x+y)(x2+ 2xy+y2 -3xy ) = (x+y)[(x+ y)2 -3xy)]
TH1: x+y = -4, xy = 3
P=x3+y3 = (x+y)[(x+ y)2 -3xy)] = -4.[(-4)2-3.3] = -28
TH1: x+y = 3, xy = -4
P=x3+y3 = (x+y)[(x+ y)2 -3xy)] = 3.[32-3.(-4)] = 63
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(4x^2+4y^2=12x+4xy\)
\(\left(2y-x\right)^2=3x\left(4-x\right)\ge0\)
=>\(0\le x\le4\)
x | 0 | 1 | 2 | 3 | 4 |
y | 0 | -1;2 | // | 0;3 | 2 |
Ta có x2+y2+xy+3x+3y+2
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(xy+x+y\right)\)
\(=\left(x+1\right)^2+\left(y+1\right)^2+\left(x+1\right)\left(y+1\right)-1\)
\(=\left(x+1+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(\frac{y+1}{2}\right)^2-1\ge-1\)
Bài có nhầm ?
Đề yêu cầu gì thế em?
giải bài thoi ạ