Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ hai vế của phương trình trên , ta có:
\(x+y+xy\left(2x+y\right)-x-y-xy\left(3x-y\right)=xy\)
\(\Rightarrow xy\left(2x+y\right)-xy\left(3x-y\right)-xy=0\)
\(\Rightarrow xy\left(2x+y-3x+y-1\right)=0\)
\(\Rightarrow xy\left(2y-x-1\right)=0\)
Đến đây xét TH và thay vào là ra
a, SBC=\(\sqrt{xy}\)(3\(\sqrt{x}\)-4\(\sqrt{y}\)+5\(\sqrt{xy}\))
câu b bn lmf tương tự nhé,mấy bài này liên quan đến phân tích đa thức bằng nhân tử đó bn:))
c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)
Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)
Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)
Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)
cộng vế pt (1) và (2), ta được:
\(3x^2+4xy+y^2=4+4x\Leftrightarrow\left(2x+y\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(3x+y-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=2-3x\end{matrix}\right.\)
thay từng trường hợp vào pt (1) giải tiếp
\(\left(3\sqrt{x^2y}-4\sqrt{xy^2}+5xy\right)\div\sqrt{xy}=3\sqrt{x}-4\sqrt{y}+5\sqrt{xy}\)