
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


làm nốt
d) (2x-1)(3x+2)(3-x)
=(6x2+x-2)(3-x)
=-6x3+17x2+5x-6
e) (x+3)(x2+3x-5)
=x3+6x2+4x-15
f) (xy-2)(x3-2x-6)
=x4y-2x3-2x2y-6xy+4x+12
g) (5x3-x2+2x-3)(4x2-x+2)
=20x5-9x4+19x3-16x2+7x-6
Bài 1:
a) (x-2)(x2+3x+4)
=x(5x+4)-2(5x+4)
= 5x2+4x-10x-8
=5x2-6x-8

a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Ở các dạng bài này bạn rút gọn đến khi không còn biến x => giá trị biểu thức không đổi
a) (2x+6)(4x^2-12x+36) -8x^3 +5
= 8x^3 -24x^2 + 72x + 24x^2 - 72x - 8x^3 + 5
= 5 ( không đổi)
=> Giá trị của biểu thức không phụ thuộc vào giá trị của biến x
1. (2x + 6 ) (4x2 - 12x + 36)-8x3 + 5
= 8x3 - 24x2 + 72x + 24x2 - 72x - 8x3 + 5
= (8x3 - 8x3) + (-24x2 + 24x2) + (72x - 72x) + 5
= 5
\(\Rightarrow\) Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. (x - 1)3 - (x - 3) (x2 + 3x + 9) - 3x (1 - x )
= (x - 1)3- (x - 3) (x2+ x . 3 + 32) - 3x + 3x2
= x3 - 3x2 .1 +3x.12 -13 - x3 - 33 - 3x + 3x2
= (x3-x3) + (-3x2 + 3x2) + (3x - 3x) + (-13 - 33)
= -28
Vậy giá trị của biểu thức trên không phụ thuộng vào biến.
3. (2x - 3) (3x2 + 1) - 6x (x2 - x + 1 ) + 3x2 + 4x
= 6x3 + 2x -9x2 - 3 - 6x3 + 6x2 - 6x + 3x2 + 4x
= (6x3- 6x3) + (-9x2 + 6x2 + 3x2) + (2x - 6x + 4x) -3
= -3
Vậy giá trị của biểu thức trên không phụ thuộc vào biến

a) \(\left(x-3\right)\)\(\left(x^2+3x+9\right)\)+\(x\left(x+2\right)\left(x-2\right)\) =1
\(\Leftrightarrow x^3\)\(-27\)+\(x\left(x^2-4\right)\) =1
\(\Leftrightarrow\)\(x^3\)\(-27\)\(+x^3\)\(-4x\) =1
\(\Leftrightarrow\)\(2x^3\)\(-4x-27\) = 1
Suy ra \(x\) =2,685673906

1) \(=-a\left(x^2+x+1\right)\)
2) \(=2ax\left(y-2ay^2+3a^2x\right)\)
3) \(=5a\left(axy-2a^2x-3y\right)\)
4) \(=-x^2y^2\left(3y+6x+1\right)\)

\(a.17+8x=10-6x\\\Leftrightarrow 8x+6x=-17+10\\\Leftrightarrow 2x=-7\\ \Leftrightarrow x=-\frac{7}{2}\)
Vậy nghiệm của phương trình trên là \(-\frac{7}{2}\)
\(b.3\left(x+5\right)+7=19-5\left(x-2\right)\\\Leftrightarrow 3x+15+7=19-5x+10\\ \Leftrightarrow3x+5x=-15-7+19+10\\ \Leftrightarrow8x=7\\\Leftrightarrow x=\frac{7}{8}\)
Vậy nghiệm của phương trình trên là \(\frac{7}{8}\)
\(c.3x-4\left(x+2\right)\left(x+3\right)=14-4\left(x^2-3x\right)\\ \Leftrightarrow3x-4\left(x^2+5x+6\right)=14-4x^2+12x\\ \Leftrightarrow4x^2-4x^2+3x-5x-12x=24+14\\ \Leftrightarrow-14x=38\\ \Leftrightarrow x=-\frac{19}{7}\)
Vậy nghiệm của phương trình trên là \(-\frac{19}{7}\)
\(d.x+\frac{3}{4}+3x+2=\frac{x}{3}-3x-\frac{2}{6}\\ \Leftrightarrow\frac{12x}{12}+\frac{9}{12}+\frac{36x}{12}+\frac{24}{12}=\frac{4x}{12}-\frac{36x}{12}-\frac{4}{12}\\ \Leftrightarrow12x+9+36x+24=4x-36x-4\\ \Leftrightarrow12x+36x+36x-4x=-24-9-4\\ \Leftrightarrow80x=-37\\ \Leftrightarrow x=-\frac{37}{80}\)

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)

a) 4(x - 3)2 - (2x - 1)(2x + 1) = 10
\(\Leftrightarrow\)4(x2 - 6x + 9) - (4x2 - 1) = 10
\(\Leftrightarrow\)4x2 - 24x + 36 - 4x2 + 1 - 10 = 0
\(\Leftrightarrow\)-24x + 27 = 0
\(\Leftrightarrow\)-24x = -27
\(\Leftrightarrow\)x = \(\frac{9}{8}\)
Vậy x = 9/8
b) (x - 4)2 - (x - 2)(x + 2) = 6
\(\Leftrightarrow\)x2 - 8x + 16 - x2 + 4 - 6 = 0
\(\Leftrightarrow\)-8x + 14 = 0
\(\Leftrightarrow\)-8x = -14
\(\Leftrightarrow\)x = \(\frac{7}{4}\)
Vậy x = 7/4
c) 9(x + 1)2 - (3x - 2)(3x + 2) = 10
\(\Leftrightarrow\)9(x2 + 2x + 1) - 9x2 + 4 - 10 = 0
\(\Leftrightarrow\)9x2 + 18x + 9 - 9x2 + 4 - 10 = 0
\(\Leftrightarrow\)18x + 3 = 0
\(\Leftrightarrow\)18x = - 3
\(\Leftrightarrow\)x = \(\frac{-1}{6}\)
Vậy x = -1/6
hình như đề hơi thiếu bạn ạ
Ta có:
\(\left(\right. a + b \left.\right)^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}\)
Ở đây \(a = 3 x , b = 2\).
\(\left(\right. 3 x + 2 \left.\right)^{3} = \left(\right. 3 x \left.\right)^{3} + 3 \cdot \left(\right. 3 x \left.\right)^{2} \cdot 2 + 3 \cdot \left(\right. 3 x \left.\right) \cdot 2^{2} + 2^{3}\) \(= 27 x^{3} + 54 x^{2} + 36 x + 8\)
Sau đó chia cho 2
\(= \frac{27}{2} x^{3} + 27 x^{2} + 18 x + 4\)
Đặt \(\)t = 3x + 2 Khi đó:
\(\frac{\left(\right. 3 x + 2 \left.\right)^{3}}{2} = \frac{t^{3}}{2}\)
Rồi khai triển t^3 \(\) bằng 3x + 2 \(\)
\(t^{3} = \left(\right. 3 x + 2 \left.\right)^{3} = 27 x^{3} + 54 x^{2} + 36 x + 8\)
Suy ra
\(\frac{t^{3}}{2} = \frac{27}{2} x^{3} + 27 x^{2} + 18 x + 4\)