\(|3x^2+2x|=|x^2+4|\)  gải hộ mình vs

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)

\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)

\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)

\(\Rightarrow\text{pt vô nghiệm}\)

26 tháng 11 2019

b. ĐKXĐ: \(x\le-4;x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)

\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)

pt đã cho tương đương:

\(t=t^2\)

\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)

\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)

19 tháng 9 2020

ăn lồn đê

19 tháng 9 2020

Đúng làm trẻ trâu , ăn nói mất lịch sự

30 tháng 12 2019

ĐK: \(x>0\)

\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)

Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)

\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)

\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)

\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)

\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)

Vậy...

21 tháng 8 2019

a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)

vậy với mọi x thì biểu thức trên luôn xác định.

b) Để .......

\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)

vậy biểu thức trên xác định khi x>1.

c) Để ..........

\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)

Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)

d) Để ........

\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)

Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)

e) Để ......

\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)

Vậy để btxđ khi ....

20 tháng 8 2019

Rồi yêu cầu đề bài đâu bạn. ?

7 tháng 8 2016

a) x25x+4=x+4

<=> \(\left[\begin{array}{nghiempt}x^2-5x+4=x+4\\x^2-5x+4=-x-4\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x^2-6x=0\\x^2-4x+8=0\end{array}\right.\)

<=> x=0 hoặc x=6

 b) x22x+8=x21

<=> \(\left[\begin{array}{nghiempt}x^2-2x+8=x^2-1\\x^2-2x+8=1-x^2\end{array}\right.\)

<=>\(\left[\begin{array}{nghiempt}2x=9\\2x^2-2x+7=0\end{array}\right.\)

<=> x=9/2

vậy nghiệm x=9/2

13 tháng 3 2019

từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1

1)vô nghiệm

2)vô nghiệm

3)luôn đúng

4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)

13 tháng 3 2019

5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm

30 tháng 8 2017

b) PT có dạng a+b+c=0

=> PT có 2 nghiệm phân biệt : \(\left[{}\begin{matrix}x=1\\x=\dfrac{-11}{3}\end{matrix}\right.\)

28 tháng 11 2019

1/ \(\left\{{}\begin{matrix}10-9x\ge0\\3x-2=\left(10-9x\right)^2\end{matrix}\right.< =>\left\{{}\begin{matrix}x\le\frac{10}{9}\\3x-2=100-180x+81x^2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\le\frac{10}{9}\\\left[{}\begin{matrix}x=\frac{34}{27}\left(l\right)\\x=1\end{matrix}\right.\end{matrix}\right.\)=> x=1

Vậy ....

28 tháng 11 2019

2.\(\left\{{}\begin{matrix}x\ge3\\3x-4=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\3x-4=x^2-6x+9\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\ge3&x=\frac{9\pm\sqrt{29}}{2}&\end{matrix}\right.\)=> \(x=\frac{9+\sqrt{29}}{2}\)

Vậy ....