Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)
ĐK: \(x>0\)
\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)
Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)
\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)
\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)
\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)
\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)
Vậy...
a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)
vậy với mọi x thì biểu thức trên luôn xác định.
b) Để .......
\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)
vậy biểu thức trên xác định khi x>1.
c) Để ..........
\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)
Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)
d) Để ........
\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)
Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)
e) Để ......
\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)
Vậy để btxđ khi ....
a) ∣x2−5x+4∣=x+4
<=> \(\left[\begin{array}{nghiempt}x^2-5x+4=x+4\\x^2-5x+4=-x-4\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x^2-6x=0\\x^2-4x+8=0\end{array}\right.\)
<=> x=0 hoặc x=6
b) x2−2x+8=∣x2−1∣
<=> \(\left[\begin{array}{nghiempt}x^2-2x+8=x^2-1\\x^2-2x+8=1-x^2\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}2x=9\\2x^2-2x+7=0\end{array}\right.\)
<=> x=9/2
vậy nghiệm x=9/2
từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1
1)vô nghiệm
2)vô nghiệm
3)luôn đúng
4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)
5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm
b) PT có dạng a+b+c=0
=> PT có 2 nghiệm phân biệt : \(\left[{}\begin{matrix}x=1\\x=\dfrac{-11}{3}\end{matrix}\right.\)
1/ \(\left\{{}\begin{matrix}10-9x\ge0\\3x-2=\left(10-9x\right)^2\end{matrix}\right.< =>\left\{{}\begin{matrix}x\le\frac{10}{9}\\3x-2=100-180x+81x^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\le\frac{10}{9}\\\left[{}\begin{matrix}x=\frac{34}{27}\left(l\right)\\x=1\end{matrix}\right.\end{matrix}\right.\)=> x=1
Vậy ....
2.\(\left\{{}\begin{matrix}x\ge3\\3x-4=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\3x-4=x^2-6x+9\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\ge3&x=\frac{9\pm\sqrt{29}}{2}&\end{matrix}\right.\)=> \(x=\frac{9+\sqrt{29}}{2}\)
Vậy ....