
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=x^2+6x\)
\(A=x^2+6x+9-9\)
\(A=\left(x+3\right)^2-9\ge-9\)
Dấu "=" xảy ra khi: \(x=-3\)
\(B=x^2+3x-5\)
\(B=x^2+3x+\dfrac{9}{4}-\dfrac{29}{4}\)
\(B=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{3}{2}\)
\(C=x^2+17x+6\)
\(C=x^2+17x+\dfrac{289}{4}-\dfrac{265}{4}\)
\(C=\left(x+\dfrac{17}{2}\right)^2-\dfrac{265}{4}\ge-\dfrac{265}{4}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{17}{2}\)
a) Đặt \(A=x^2+6x=x^2+6x+9-9=\left(x+3\right)^2-9\)
Vì \(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2-9\ge-9\)
''='' xảy ra khi \(x+3=0\Rightarrow x=-3\)
Vậy \(A_{MIN}=-9\) khi x = -3
b) Đặt \(B=x^2+3x-5=x^2+2\cdot x\cdot1,5+2,25-\dfrac{29}{4}\)
\(=\left(x+1,5\right)^2-\dfrac{29}{4}\)
Vì \(\left(x+1,5\right)^2\ge0\forall x\Rightarrow\left(x+1,5\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\)
''='' xảy ra khi x + 1,5 = 0 => x = -1,5
Vậy \(B_{MIN}=-\dfrac{29}{4}\) khi \(x=-1,5\)
c) Đặt \(C=x^2+17x+6=x^2+2\cdot x\cdot8,5+72,25-\dfrac{265}{4}\)
\(=\left(x+8,5\right)^2-\dfrac{265}{4}\)
Vì \(\left(x+8,5\right)^2\ge0\forall x\Rightarrow\left(x+8,5\right)^2-\dfrac{265}{4}\ge-\dfrac{265}{4}\)
''='' xảy ra khi x = -8,5
Vậy...............


Ta có : |17x - 5| - |17x + 5| = 0
Mà |17x - 5| \(\ge\)0 ; |17x + 5| \(\ge\) 0
Nên \(\hept{\begin{cases}\left|17x-5\right|=0\\\left|17x+5\right|=0\end{cases}}\)
<=>\(\hept{\begin{cases}17x-5=0\\17x+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}17x=5\\17x=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{17}\\x=-\frac{5}{17}\end{cases}}\)
Mà x ko thể đồng thời bằng 2 giá trị
Nên x thuộc rỗng

\(C=x^2-3x+5\)
\(=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
\(\Rightarrow C\ge\dfrac{11}{4}\forall x\)
Dấu "=" xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MIN_C=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}.\)
\(D=3x^2-6x-1\)
\(=3\left(x^2-3x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{31}{12}\right)\)
\(=3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{12}\right]\)
\(=3\left(x-\dfrac{3}{2}\right)^2-\dfrac{31}{4}\)
.......
Vậy \(MIN_D=\dfrac{-31}{4}\) khi \(x=\dfrac{3}{2}.\)
\(E=2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left[\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)
\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
.....
Vậy \(MIN_E=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}.\)
\(3x^3+17x^2-6x-13=0\)
\(x\approx0,72;x\approx-5,88;x\approx-0,76\)
Ta có:
<=> (3 + 17) . x 2 = 6x + 13
=> 20x2 = 6x + 13
=>