Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 + 3x2 - 25x + 21 = 0
Dạng giải phương trình, mấy thánh giỏi rõ giùm em, đừng ghi tắt nha... Hậu tạ
Cái này nhẩm nghiệm được mà,do tổng các hệ số =0 >>>Pt có 1 nghiệm là 1>>>có chứa nhân tử x-1.
Phân tích:x^3+3x^2-25x+21=x^3-x^2+4x^2-4x-21x+21
=(x^2+4x-21)(x-1)=(x+7)(x-3)(x-1)>>>phương trình có 3 nghiệm là -7,3,1
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
a)
\(\left\{{}\begin{matrix}3x-y=3\\2x+y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3x-3\\2x+y=7\end{matrix}\right.\\ \Leftrightarrow2x+3x-3=7\\ \Leftrightarrow5x-3=7\\ \Leftrightarrow5x=10\\ \Leftrightarrow x=2\\ \Leftrightarrow y=3.2-3=6-3=3\)
Vậy \(S=\left\{x;y\right\}=\left\{2;3\right\}\)
b)
\(\left\{{}\begin{matrix}3x-y=5\\2y-x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\x=2y\end{matrix}\right.\\ \Leftrightarrow3.2y-y=5\\ \Leftrightarrow5y=5\\ \Leftrightarrow y=1\\ \Leftrightarrow x=2y=2.1=2\)
Vậy \(S=\left\{x;y\right\}=\left\{1;2\right\}\)
Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?
Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)
Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)
Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)
Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)
Tam giác vuông \(IJO\): \(IJ^2=OI^2-JO^2\)
\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)
Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)
Do O là trung điểm BC nên \(IO\perp BC\)
\(\Rightarrow OI^2+OC^2=IC^2\)
Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)
Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)
\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)
Thế vào (3):
\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)
Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c
\(\left\{{}\begin{matrix}2x+y=3\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-2x\\3x-\left(3-2x\right)=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=3-2x\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy hpt trên có nghiệm duy nhất là (1;1)
\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}\cdot\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=x-y-2\sqrt{y}\)
\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}.\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)\(.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)\(-2\sqrt{y}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=x-y-2\sqrt{y}\)
Ta có: \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+y\right)=2\\-\left(2x+3y\right)=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\2x+3y=-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2\cdot\left(-2-y\right)+3y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\-4-2y+3y+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-\left(-5\right)\\y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2+5=3\\y=-5\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
có
\(\left\{{}\begin{matrix}3x-y=2\\5x+y=6\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}y=3x-2\\y=6-5x\end{matrix}\right.\\ =>3x-2=6-5x\\ < =>8x=8\\ < =>x=1\\ =>y=3\cdot1-2=1\\ =>\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x-y=2\\5x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\8x=8\end{matrix}\right.\) (Ta có: \(\left(3x+5x\right)+\left(-y+y\right)=2+6\))
\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\x=\dfrac{8}{8}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\cdot1-y=2\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-y=2\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3-2\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy căp (x;y) thỏa mãn là (1;1)