Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^5=3.3.3.3.3\)
\(6^2=6.6\)
\(5^4=5.5.5.5\)
\(2^2=2.2\)
\(7^3=7.7.7\)
cho mik đi
\(0,81:\frac{x}{2}=\frac{16}{x^4}:\left(-0.9\right)\)
=> \(\frac{81}{100}:\frac{x}{2}=\frac{16}{x^4}:\frac{-9}{10}\)
=> \(\frac{81}{50x}=\frac{160}{-9.x^4}\)
=> \(81.\left(-9\right)x^4=50x.160\)
=> \(-729.x^4=8000.x\)
=> \(x^4:x=8000:\left(-729\right)\)
=> \(x^3=\frac{-8000}{729}\)
=> \(x^3=\frac{-20^3}{9^3}\)
=> \(x^3=\frac{-20}{9}^3\)
=> \(x=\frac{-20}{9}\)
Mình nghĩ \(x,y\inℕ\)mới làm được bài toán nhé
ĐK:\(x\ne0\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)
\(\Rightarrow30-2xy=x\)
\(x+2xy=30\)
\(\Leftrightarrow x\left(2y+1\right)=30\)
Vì \(y\inℕ\Rightarrow\hept{\begin{cases}2y+1\inƯ\left(30\right)\\2y+1⋮̸2\end{cases}}\)
\(\Rightarrow2y+1\in\left\{3;5\right\}\)
\(\Rightarrow y\in\left\{1;2\right\}\)
Với y=2 thì x=6
Với y=1 thì x = 10
Ta có: \(\frac{x}{2}=\frac{15}{20}\Leftrightarrow\frac{10x}{20}=\frac{15}{20}\Leftrightarrow10x=15\Leftrightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
\(\Rightarrow\)\(\frac{x}{2}\)=\(\frac{3}{4}\)
x.4=2.3
x.4=6
x =6:4
\(\Rightarrow\)x=\(\frac{6}{4}\)=\(\frac{3}{2}\)
\(\Rightarrow\)x=3
ta thấy \(2x^2+7>0\)
\(=>-3x-9< 0\)
\(=>-3x< 9\)
\(=>x>-3\)
vậy...
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\frac{2}{x+1}=1-\frac{2007}{2009}\)
\(\frac{2}{x+1}=\frac{2}{2009}\)
\(\Rightarrow x+1=2009\Leftrightarrow x=2008\)
3x = 81
3x = 34
x = 4
Vậy x = 4
\(3^4=81\)